[2] Chajda, I.:
Pseudosemirings induced by ortholattices. Czech. Math. J. 46 (2008), 405–411.
MR 1408295
[3] Chajda, I., Eigenthaler, G.:
A note on orthopseudorings and Boolean quasirings. Österr. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 207 (1998), 83–94.
MR 1749914 |
Zbl 1040.06003
[4] Chajda, I., Länger, H.:
Ring-like operations in pseudocomplemented semilattices. Discuss. Math., Gen. Algebra Appl. 20 (2010), 87–95.
DOI 10.7151/dmgaa.1008 |
MR 1782088
[5] Chajda, I., Švrček, F.:
Lattice-like structures derived from rings. In: Proc. of Salzburg Conference (AAA81), Contributions to General Algebra 20, J. Heyn, Klagenfurt, 2011.
MR 2908430
[6] Dorninger, D., Länger, H., Ma̧cyński, M.:
The logic induced by a system of homomorphisms and its various algebraic characterizations. Demonstratio Math. 30 (1997), 215–232.
MR 1446613
[7] Dorninger, D., Länger, H., Ma̧cyński, M.:
On ring-like structures occuring in axiomatic quantum mechanics. Österr. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 206 (1997), 279–289.
MR 1632939
[11] Dorninger, D., Länger, H., Ma̧cyński, M.:
Ring-like structures with unique symmetric difference related to quantum logic. Discuss. Math., Gen. Algebra Appl. 21 (2001), 239–253.
DOI 10.7151/dmgaa.1041 |
MR 1894319
[12] Länger, H.:
Generalizations of the corresspondence between Boolean algebras and Boolean rings to orthomodular lattices. Tatra Mt. Math. Publ. 15 (1998), 97–105.
MR 1655082