[2] Bar-Moshe, D.:
A method for weight multiplicity computation based on Berezin quantization. SIGMA 5 (2009), 091, 1–12.
MR 2559670 |
Zbl 1188.22009
[8] Bernatska, J., Holod, P.:
Geometry and topology of coadjoint orbits of semisimple Lie groups. Mladenov, I. M., de León, M. (eds) Proceedings of the 9th international conference on ’Geometry, Integrability and Quantization’, June 8–13, 2007, Varna, Bulgarian Academy of Sciences, Sofia, 2008, 146–166.
MR 2436268 |
Zbl 1208.22009
[10] Berndt, R., Schmidt, R.:
Elements of the Representation Theory of the Jacobi Group. Progress in Mathematics 163, Birkhäuser Verlag, Basel, 1988.
MR 1634977
[12] Cahen, B.:
Contraction de $SU(1,1)$ vers le groupe de Heisenberg. In: Mathematical works, Part XV, Séminaire de Mathématique Université du Luxembourg, Luxembourg, (2004), 19–43.
MR 2143420 |
Zbl 1074.22005
[14] Cahen, B.:
Multiplicities of compact Lie group representations via Berezin quantization. Mat. Vesnik 60 (2008), 295–309.
MR 2465811 |
Zbl 1199.22016
[15] Cahen, B.:
Contraction of compact semisimple Lie groups via Berezin quantization. Illinois J. Math. 53, 1 (2009), 265–288.
MR 2584946 |
Zbl 1185.22008
[16] Cahen, B.:
Berezin quantization on generalized flag manifolds. Math. Scand. 105 (2009), 66–84.
MR 2549798 |
Zbl 1183.22006
[17] Cahen, B.:
Contraction of discrete series via Berezin quantization. J. Lie Theory 19 (2009), 291–310.
MR 2572131 |
Zbl 1185.22007
[18] Cahen, B.:
Berezin quantization for discrete series. Beiträge Algebra Geom. 51 (2010), 301–311.
MR 2682458
[19] Cahen, B.:
Stratonovich-Weyl correspondence for discrete series representations. Arch. Math. (Brno) 47 (2011), 41–58.
MR 2813546 |
Zbl 1240.22011
[20] Cahen, B.: Berezin quantization and holomorphic representations. Rend. Sem. Mat. Univ. Padova, to appear.
[23] Cotton, P., Dooley, A. H.:
Contraction of an adapted functional calculus. J. Lie Theory 7 (1997), 147–164.
MR 1473162 |
Zbl 0882.22015
[25] Helgason, S.:
Differential Geometry, Lie Groups and Symmetric Spaces. Graduate Studies in Mathematics 34, American Mathematical Society, Providence, Rhode Island, 2001.
MR 1834454 |
Zbl 0993.53002
[26] Kirillov, A. A.:
Lectures on the Orbit Method, Graduate Studies in Mathematics. 64, American Mathematical Society, Providence, Rhode Island, 2004.
MR 2069175
[27] Kostant, B.:
Quantization and unitary representations. In: Modern Analysis and Applications, Lecture Notes in Mathematics 170, Springer-Verlag, Berlin, Heidelberg, New York, (1970), 87–207.
MR 0294568 |
Zbl 0223.53028
[28] Neeb, K-H.:
Holomorphy and Convexity in Lie Theory. de Gruyter Expositions in Mathematics 28, Walter de Gruyter, Berlin, New York, 2000.
MR 1740617
[29] Satake, I:
Algebraic Structures of Symmetric Domains. Iwanami Sho-ten, Tokyo and Princeton Univ. Press, Princeton, NJ, 1971.
MR 0591460
[30] Skrypnik, T. V.:
Coadjoint orbits of compact Lie groups and generalized stereographic projection. Ukr. Math. J. 51 (1999), 1939–1944.
DOI 10.1007/BF02525136 |
MR 1752044
[31] Varadarajan, V. S.:
Lie groups, Lie Algebras and Their Representations. Graduate Texts in Mathematics 102, Springer-Verlag, Berlin, 1984.
MR 0746308 |
Zbl 0955.22500