Previous |  Up |  Next

Article

Keywords:
chaotic attractors; stable equilibrium; Shilnikov theorem; Lyapunov exponent; synchronization
Summary:
By introducing a feedback control to a proposed Sprott E system, an extremely complex chaotic attractor with only one stable equilibrium is derived. The system evolves into periodic and chaotic behaviors by detailed numerical as well as theoretical analysis. Analysis results show that chaos also can be generated via a period-doubling bifurcation when the system has one and only one stable equilibrium. Based on Lyapunov stability theory, the adaptive control law and the parameter update law are derived to achieve modified function projective synchronized between the extended Sprott E system and original Sprott E system. Numerical simulations are presented to demonstrate the effectiveness of the proposed adaptive controllers.
References:
[1] Chen, G. R., Ueta, T.: Yet another chaotic attractor. Internat. J. Bifur. Chaos 9 (1999), 1465-1466. DOI 10.1142/S0218127499001024 | MR 1729683 | Zbl 0962.37013
[2] Lorenz, E. N.: Deterministic non-periodic flow. J. Atmospheric Sci. 20 (1963), 130-141. DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[3] Lü, J. H., Chen, G. R.: A new chaotic attractor coined. Internat. J. Bifur. Chaos 12 (2002), 659-661. DOI 10.1142/S0218127402004620 | MR 1894886 | Zbl 1063.34510
[4] Lü, J. H., Chen, G. R., Cheng, D. Z.: A new chaotic system and beyond: The generalized Lorenz-like system. Internat. J. Bifur. Chaos 14 (2004), 1507-1537. DOI 10.1142/S021812740401014X | MR 2072347 | Zbl 1129.37323
[5] Lü, J. H., Han, F. L., Yu, X. H., Chen, G. R.: Generating 3-D multi-scroll chaotic attractors: A hysteresis series switching method. Automatica 40 (2004), 1677-1687. DOI 10.1016/j.automatica.2004.06.001 | MR 2155461 | Zbl 1162.93353
[6] Lü, J. H., Yu, S. M., Leung, H., Chen, G. R.: Experimental verification of multidirectional multiscroll chaotic attractors. IEEE Trans. Circuits Systems C I: Regular Papers 53 (2006), 149-165. DOI 10.1109/TCSI.2005.854412
[7] Liu, Y. J., Pang, G. P.: The basin of attraction of the Liu system. Comm. Nonlinear Sci. Numer. Simul. 16 (2011), 2065-2071. DOI 10.1016/j.cnsns.2010.08.011 | MR 2736072 | Zbl 1221.34145
[8] Li, J. M.: Limit cycles bifurcated from a reversible quadratic center. Qualit. Theory Dynam. Systems 6 (2005), 205-215. DOI 10.1007/BF02972673 | MR 2420857 | Zbl 1142.34019
[9] Rössler, O. E.: An equation for continuious chaos. Phys. Lett. A 57 (1976), 397-398. DOI 10.1016/0375-9601(76)90101-8
[10] Silva, C. P.: Shilnikov's theorem - A tutorial. IEEE Trans. Circuits Syst. I 40 (1993), 657-682. DOI 10.1109/81.246142 | MR 1255705
[11] Sprott, J. C.: Some simple chaotic flows. Phys. Rev. E 50 (1994), 647-650. DOI 10.1103/PhysRevE.50.R647 | MR 1381868
[12] Sprott, J. C.: A new class of chaotic circuit. Phys. Lett. A 266 (2000), 19-23. DOI 10.1016/S0375-9601(00)00026-8
[13] Sprott, J. C.: Simplest dissipative chaotic flow. Phys. Lett. A 228 (1997), 271-274. DOI 10.1016/S0375-9601(97)00088-1 | MR 1442639 | Zbl 1043.37504
[14] Shilnikov, L. P.: A case of the existence of a countable number of periodic motions. Soviet Math. Dokl. 6 (1965), 163-166.
[15] Shilnikov, L. P.: A contribution of the problem of the structure of an extended neighborhood of rough equilibrium state of saddle-focus type. Math. USSR-Sb. 10 (1970), 91-102. DOI 10.1070/SM1970v010n01ABEH001588
[16] Shaw, R.: Strange attractor, chaotic behaviour and information flow. Z. Naturforsch. 36A (1981), 80-112. MR 0604920
[17] Schrier, G. V., Maas, L. R. M.: The difusionless Lorenz equations: Shilnikov bifurcations and reduction to an explicit map. Physica D 141 (2000), 19-36. MR 1764166
[18] Vaněček, A., Čelikovský, S.: Control Systems: From Linear Analysis to Synthesis of Chaos. Prentice-Hall, London 1996. Zbl 0874.93006
[19] Wang, X., Chen, G. R.: A chaotic system with only one stable equilibrium. Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 1264-1272. DOI 10.1016/j.cnsns.2011.07.017 | MR 2843793
[20] Wang, Z.: Existence of attractor and control of a 3D differential system. Nonlinear Dynamics 60(3) (2010), 369-373. DOI 10.1007/s11071-009-9601-1 | MR 2645029 | Zbl 1189.70103
[21] Wei, Z. C.: Dynamical behaviors of a chaotic system with no equilibria. Phys. Lett. A 376 (2011), 248-253. MR 2859307 | Zbl 1255.37013
[22] Yang, Q. G., Chen, G. R., Huang, K. F.: Chaotic attractors of the conjugate Lorenz-type system. Internat. J. Bifur. Chaos 17 (2007), 3929-3949. DOI 10.1142/S0218127407019792 | MR 2384392 | Zbl 1149.37308
[23] Yang, Q. G., Chen, G. R.: A chaotic system with one saddle and two stable node-foci. Internat. J. Bifur. Chaos 18 (2008), 1393-1414. DOI 10.1142/S0218127408021063 | MR 2427132 | Zbl 1147.34306
[24] Yang, Q. G., Wei, Z. C., Chen, G. R.: A unusual 3D autonomons quadratic chaotic system with two stable node-foci. Internat. J. Bifur. Chaos 20 (2010), 1061-1083. DOI 10.1142/S0218127410026320 | MR 2660159
[25] Yu, S. M., Lü, J. H., Yu, X. H.: Design and implementation of grid multiwing hyperchaotic Lorenz system family via switching control and constructing super-heteroclinic loops. IEEE Trans. Circuits Systems C I: Regular Papers 59 (2012), 1015-1028. DOI 10.1109/TCSI.2011.2180429 | MR 2924533
[26] Zhao, L. Q., Wang, Q.: Perturbations from a kind of quartic hamiltonians under general cubic polynomials. Sci. China Series A: Mathematics 52 (2009), 427-442. DOI 10.1007/s11425-009-0009-7 | MR 2491762 | Zbl 1192.34044
Partner of
EuDML logo