[6] Lü, J. H., Yu, S. M., Leung, H., Chen, G. R.:
Experimental verification of multidirectional multiscroll chaotic attractors. IEEE Trans. Circuits Systems C I: Regular Papers 53 (2006), 149-165.
DOI 10.1109/TCSI.2005.854412
[14] Shilnikov, L. P.: A case of the existence of a countable number of periodic motions. Soviet Math. Dokl. 6 (1965), 163-166.
[15] Shilnikov, L. P.:
A contribution of the problem of the structure of an extended neighborhood of rough equilibrium state of saddle-focus type. Math. USSR-Sb. 10 (1970), 91-102.
DOI 10.1070/SM1970v010n01ABEH001588
[16] Shaw, R.:
Strange attractor, chaotic behaviour and information flow. Z. Naturforsch. 36A (1981), 80-112.
MR 0604920
[17] Schrier, G. V., Maas, L. R. M.:
The difusionless Lorenz equations: Shilnikov bifurcations and reduction to an explicit map. Physica D 141 (2000), 19-36.
MR 1764166
[18] Vaněček, A., Čelikovský, S.:
Control Systems: From Linear Analysis to Synthesis of Chaos. Prentice-Hall, London 1996.
Zbl 0874.93006
[21] Wei, Z. C.:
Dynamical behaviors of a chaotic system with no equilibria. Phys. Lett. A 376 (2011), 248-253.
MR 2859307 |
Zbl 1255.37013
[24] Yang, Q. G., Wei, Z. C., Chen, G. R.:
A unusual 3D autonomons quadratic chaotic system with two stable node-foci. Internat. J. Bifur. Chaos 20 (2010), 1061-1083.
DOI 10.1142/S0218127410026320 |
MR 2660159
[25] Yu, S. M., Lü, J. H., Yu, X. H.:
Design and implementation of grid multiwing hyperchaotic Lorenz system family via switching control and constructing super-heteroclinic loops. IEEE Trans. Circuits Systems C I: Regular Papers 59 (2012), 1015-1028.
DOI 10.1109/TCSI.2011.2180429 |
MR 2924533