[2] Bercovici, H., Foiaş, C., Pearcy, C.:
Dual Algebras with Applications to Invariant Subspaces and Dilation Theory. Reg. Conf. Ser. Math. 56, 1985.
DOI 10.1090/cbms/056 |
Zbl 0569.47007
[3] Brown, S., Chevreau, B., Pearcy, C.:
Contractions with rich spectrum have invariant subspaces. J. Oper. Theory 1 (1979), 123-136.
MR 0526294 |
Zbl 0449.47003
[4] Conway, J. B.:
A Course in Functional Analysis. 2nd ed. Graduate Texts in Mathematics, 96. Springer, New York (1990).
MR 1070713 |
Zbl 0706.46003
[5] Conway, J. B.:
A Course in Operator Theory. Graduate Studies in Mathematics 21, American Mathematical Society, Providence (2000).
MR 1721402 |
Zbl 0936.47001
[6] Douglas, R. G.:
Banach Algebra Techniques in Operator Theory. Pure and Applied Mathematics, 49. Academic Press, New York (1972).
MR 0361893 |
Zbl 0247.47001
[7] Duren, P. L.:
Theory of $H^p$ Spaces. Pure and Applied Mathematics, 38. Academic Press, New York-London (1970).
MR 0268655
[8] Hoffman, K.:
Banach Spaces of Analytic Functions. Prentice-Hall Series in Modern Analysis, Englewood Cliffs, N.J., Prentice-Hall (1962).
MR 0133008 |
Zbl 0117.34001
[9] Koosis, P.:
Introduction to $H_p$ Spaces. London Mathematical Society Lecture Note Series. 40. Cambridge University Press, Cambridge (1980).
MR 0565451 |
Zbl 0435.30001
[10] Nikolski, N. K.:
Operators, Functions, and Systems: An Easy Reading. Volume I: Hardy, Hankel, and Toeplitz. Transl. from the French by Andreas Hartmann. Mathematical Surveys and Monographs, 92. American Mathematical Society, Providence (2002).
MR 1864396 |
Zbl 1007.47001