Previous |  Up |  Next

Article

MSC: 62A10, 93E12
Keywords:
fuzzy metric space; t-norm; isometry; analysis
Summary:
In this paper, we prove that for a given positive continuous t-norm there is a fuzzy metric space in the sense of George and Veeramani, for which the given t-norm is the strongest one. For the opposite problem, we obtain that there is a fuzzy metric space for which there is no strongest t-norm. As an application of the main results, it is shown that there are infinite non-isometric fuzzy metrics on an infinite set.
References:
[1] Dombi, J.: A general class of fuzzy operators, the demorgan class of fuzzy operators and fuzziness measures induced by fuzzy operators. Fuzzy Set and Systems 8 (1982), 149-163. DOI 10.1016/0165-0114(82)90005-7 | MR 0666628 | Zbl 0494.04005
[2] George, A., Veeramani, P.: On some results in fuzzy metric spaces. Fuzzy Set and Systems 64 (1994), 395-399. DOI 10.1016/0165-0114(94)90162-7 | MR 1289545 | Zbl 0843.54014
[3] Gregori, V., Romaguera, S.: On completion of fuzzy metrics paces. Fuzzy Set and Systems 130 (2002), 399-404. DOI 10.1016/S0165-0114(02)00115-X | MR 1928435
[4] Gregori, V., Morillas, S., Sapena, A.: Examples of fuzzy metrics and applications. Fuzzy Set and Systems 170 (2011), 95-111. MR 2775611 | Zbl 1210.94016
[5] Klement, E. P., Mesiar, R., Pap, E.: Triangular norms. Kluwer Academic, Dordrecht 2000. MR 1790096 | Zbl 1087.20041
[6] Kramosil, I., Michálek, J.: Fuzzy metric and statistical metric spaces. Kybernetika 11 (1975), 326-334. MR 0410633
[7] Menger, K.: Statistical metrics. Proc. Nat. Acad. Sci. USA 28 (1942), 535-537. DOI 10.1073/pnas.28.12.535 | MR 0007576 | Zbl 0063.03886
[8] Sapena, A.: A contribution to the study of fuzzy metric spaces. Appl. Gen. Topology 2 (2001), 63-76. MR 1863833 | Zbl 1249.76040
[9] Schweizer, B., Sklar, A.: Statistical metric spaces. Pacific J. Math. 10 (1960), 314-334. MR 0115153 | Zbl 0136.39301
[10] Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. North Holland, Amsterdam 1983. MR 0790314 | Zbl 0546.60010
[11] Thorp, E.: Best possible triangle inequalities for statistical metric spaces. Proc. Amer. Math. Soc. 11 (1960), 734-740. DOI 10.1090/S0002-9939-1960-0119302-6 | MR 0119302 | Zbl 0125.37002
Partner of
EuDML logo