Previous |  Up |  Next

Article

MSC: 08A72, 90B35, 90C47
Keywords:
weak robustness; fuzzy matrices
Summary:
A matrix $A$ in $(\max,\min)$-algebra (fuzzy matrix) is called weakly robust if $A^k\otimes x $ is an eigenvector of $A$ only if $x$ is an eigenvector of $A$. The weak robustness of fuzzy matrices are studied and its properties are proved. A characterization of the weak robustness of fuzzy matrices is presented and an $O(n^2)$ algorithm for checking the weak robustness is described.
References:
[1] Cechlárová, K.: Eigenvectors in bottleneck algebra. Linear Algebra Appl. 174 (1992), 63-73. MR 1179341 | Zbl 0756.15014
[2] Cechlárová, K.: Unique solvability of $\max-\min$ fuzzy equations and strong regularity of matrices over fuzzy algebra. Fuzzy Sets and Systems 75 (1995), 165-177. MR 1358219 | Zbl 0852.15011
[3] Nola, A. Di, Sessa, S., Pedrycz, W., Sanchez, E.: Fuzzy Relation Equations and Their Application to Knowledge Engineering. Kluwer, Dordrecht 1989. MR 1120025
[4] Gavalec, M.: Computing matrix period in max-min algebra. Discrete Appl. Math. 75 (1997), 63-70. DOI 10.1016/S0166-218X(96)00079-0 | MR 1451951 | Zbl 0876.05070
[5] Gavalec, M.: Solvability and unique solvability of $\max$-$\min$ fuzzy equations. Fuzzy Sets and Systems 124 (2001), 385-393. DOI 10.1016/S0165-0114(01)00108-7 | MR 1860858 | Zbl 0994.03047
[6] Gondran, M., Minoux, M.: Valeurs propres et vecteurs propres en théorie des graphes. Colloques Internationaux, C.N.R.S., Paris 1978, pp. 181-183.
[7] Gondran, M., Minoux, M.: Graphs, Dioids and Semirings: New Models and Algorithms. Springer 2008. MR 2389137 | Zbl 1201.16038
[8] Horvath, T., Vojtáš, P.: Induction of fuzzy and annotated logic programs. Inductive Logic Programming 4455 (2007), 260-274. Zbl 1201.68089
[9] Molnárová, M., Myšková, H., Plavka, J.: The robustness of interval fuzzy matrices. Linear Algebra and Its Applications
[10] Myšková, H.: Interval systems of max-separable linear equations. Linear Algebra Appl. 403 (2005), 263-272. MR 2140286 | Zbl 1129.15003
[11] Myšková, H.: Control solvability of interval systems of max-separable linear equations. Linear Algebra Appl. 416 (2006), 215-223. MR 2242726 | Zbl 1129.15003
[12] Myšková, M.: Max-min interval systems of linear equations with bounded solution. Kybernetika 48 (2012), 2, 299-308. MR 2954328
[13] Plavka, J., Szabó, P.: On the $\lambda$-robustness of matrices over fuzzy algebra. Discrete Appl. Math. 159(2011), 5, 381-388. DOI 10.1016/j.dam.2010.11.020 | MR 2755915 | Zbl 1225.15027
[14] Plavka, J.: On the $O(n^3)$ algorithm for checking the strong robustness of interval fuzzy matrices. Discrete Appl. Math. 160 (2012), 640-647. DOI 10.1016/j.dam.2011.11.010 | MR 2876347
[15] Plavka, J., Vojtáš, P.: On the computing the maximal multiple users preferences using strong robustness of interval fuzzy matrices. Submitted.
[16] Sanchez, E.: Resolution of eigen fuzzy sets equations. Fuzzy Sets and Systems 1 (1978), 69-74. DOI 10.1016/0165-0114(78)90033-7 | MR 0494745 | Zbl 0366.04001
[17] Sanchez, E.: Medical diagnosis and composite relations. In: Advances in Fuzzy Set Theory and Applications (M. M. Gupta, R. K. Ragade, R. R. Yager, eds.), North-Holland, Amsterdam - New York 1979, pp. 437-444. MR 0558737
[18] Tan, Yi-Jia: Eigenvalues and eigenvectors for matrices over distributive lattices. Lin. Algebra Appl. 283 (1998), 257-272. DOI 10.1016/S0024-3795(98)10105-2 | MR 1657171 | Zbl 0932.15005
[19] Tan, Yi-Jia: On the eigenproblem of matrices over distributive lattices. Lin. Algebra Appl. 374 (2003), 96-106. MR 2008782
[20] Terano, T., Tsukamoto, Y.: Failure diagnosis by using fuzzy logic. In: Proc. IEEE Conference on Decision Control, New Orleans 1977, pp. 1390-1395.
[21] Zimmernann, K.: Extremální algebra (in Czech). Ekonom. ústav ČSAV, Praha 1976.
[22] Zimmermann, U.: Linear and Combinatorial Optimization in Ordered Algebraic Structure. North Holland, Amsterdam 1981. MR 0609751
Partner of
EuDML logo