[1] Baer, R.: Arrangement of subgroups and the structure of a group. Sitzungber. Heidelberger Akad. Wiss. 2 (1933), 12-17 German.
[2] Dedekind, R.: Groups with all normal subgroups. German Math. Ann. 48 (1897), 548-561.
[3] Dixon, M. R., Subbotin, I. Ya.:
Groups with finiteness conditions on some subgroup systems: a contemporary stage. Algebra Discrete Math. No. 4 2009 (2009), 29-54.
MR 2681481 |
Zbl 1199.20051
[5] Falco, M. De, Kurdachenko, L. A., Subbotin, I. Ya.:
Groups with only abnormal and subnormal subgroups. Atti Sem. Mat. Fis. Univ. Modena 47 (1998), 435-442.
MR 1665935 |
Zbl 0918.20017
[9] Kurdachenko, L. A., Otal, J., Subbotin, I. Ya.:
Artinian Modules over Group Rings. Birkhaüser, Basel (2007).
MR 2270897 |
Zbl 1110.16001
[11] Kurdachenko, L. A., Subbotin, I. Ya., Chupordya, V. A.:
On some near to nilpotent groups. Fundam. Appl. Math. 14 (2008), 121-134.
MR 2533617
[13] Kuzennyi, N. F., Subbotin, I. Ya.:
New characterization of locally nilpotent $ \overline{IH}$-groups. Russian Ukrain. Mat. J. 40 (1988), 322-326.
MR 0952119
[14] Kuzennyi, N. F., Subbotin, I. Ya.:
Locally soluble groups in which all infinite subgroups are pronormal. Russian Izv. Vyssh. Ucheb. Zaved., Mat. 11 (1988), 77-79.
MR 0983287
[15] Legovini, P.:
Finite groups whose subgroups are either subnormal or pronormal. Italian Rend. Semin. Mat. Univ. Padova 58 (1977), 129-147.
MR 0543135
[16] Legovini, P.:
Finite groups whose subgroups are either subnormal or pronormal. II. Italian Rend. Semin. Mat. Univ. Padova 65 (1981), 47-51.
MR 0653281 |
Zbl 0482.20013
[18] Olshanskii, A. Yu.:
Geometry of Defining Relations in Groups. Kluwer Acad. Publ., Dordrecht (1991).
MR 1191619
[22] Schmidt, O. Yu.: Groups whose all subgroups are special. Russian Mat. Sbornik 31 (1925), 366-372.
[23] Schmidt, R.: Subgroups Lattices of Groups. Walter de Gruyter, Berlin (1994).
[26] Zacher, G.: Finite soluble groups in which composition subgroups are quasi-normal. Italian Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 37 (1964), 150-154.