Previous |  Up |  Next

Article

Keywords:
ideal; filter; $\mathcal{I}$-quasinormal convergence; Chain Condition; $AP$-ideal; $\mathcal{I}QN$ space; $\mathcal{I}wQN$ space
Summary:
In this paper we extend the notion of quasinormal convergence via ideals and consider the notion of $\mathcal{I}$-quasinormal convergence. We then introduce the notion of $\mathcal{I}QN (\mathcal{I}wQN)$ space as a topological space in which every sequence of continuous real valued functions pointwise converging to $0$, is also $\mathcal{I}$-quasinormally convergent to $0$ (has a subsequence which is $\mathcal{I}$-quasinormally convergent to $0$) and make certain observations on those spaces.
References:
[1] Balcar B., Pelant J., Simon P.: The space of ultrafilters on $\mathbb{N}$ covered by nowhere dense sets. Fund. Math. 110 (1980), 11–24. MR 0600576
[2] Balcerzak M., Dems K., Komisarski A.: Statistical convergence and ideal convergence for sequence of functions. J. Math. Anal. Appl. 328 (2007), no. 1, 715–729. DOI 10.1016/j.jmaa.2006.05.040 | MR 2285579
[3] Bukovská Z.: Thin sets in trigonometrical series and quasinormal convergence. Math. Slovaca 40 (1990), 53–62. MR 1094972 | Zbl 0733.43003
[4] Bukovská Z.: Quasinormal convergence. Math. Slovaca 41 (1991), no. 2, 137–146. MR 1108577 | Zbl 0757.40004
[5] Bukovský L., Reclaw I., Repický M.: Spaces not distinguishing pointwise and quasinormal convergence of real functions. Topology Appl. 41 (1991), no. 1–2, 25–40. DOI 10.1016/0166-8641(91)90098-7 | MR 1129696 | Zbl 0768.54025
[6] Bukovský L., Reclaw I., Repický M.: Spaces not distinguishing convergence of real valued functions. Topology Appl. 112 (2001), no. 1, 13–40. DOI 10.1016/S0166-8641(99)00226-6 | MR 1815270
[7] Bukovský L., Haleš J.: $QN$ spaces, $wQN$ spaces and covering properties. Topology Appl. 154 (2007), no. 4, 848–858. DOI 10.1016/j.topol.2006.09.008 | MR 2294632 | Zbl 1117.54003
[8] Császár Á., Laczkovich M.: Discrete and equal convergence. Studia Sci. Math. Hungar. 10 (1975), 463–472. MR 0515347 | Zbl 0405.26006
[9] Császár Á., Laczkovich M.: Some remarks on discrete Baire classes. Acta. Math. Acad. Sci. Hungar. 33 (1979), 51–70. DOI 10.1007/BF01903381 | MR 0515120 | Zbl 0401.54010
[10] Chandra D., Das P.: Some further investigations of open covers and selection principles using ideals. Topology Proc. 39 (2012), 281–291. MR 2869444
[11] Das P., Ghosal S.K.: Some further results on $\mathcal{I}$-Cauchy sequences and condition (AP). Comput. Math. Appl. 59 (2010), no. 8, 2597–2600. DOI 10.1016/j.camwa.2010.01.027 | MR 2607963
[12] Das P., Ghosal S.K.: On $\mathcal{I}$-Cauchy nets and completeness. Topology Appl. 157 (2010), no. 7, 1152–1156. DOI 10.1016/j.topol.2010.02.003 | MR 2607080
[13] Das P., Ghosal S.K.: When $\mathcal{I}$-Cauchy nets in complete uniform spaces are $\mathcal{I}$-convergent. Topology Appl. 158 (2011), no. 13, 1529–1533. DOI 10.1016/j.topol.2011.05.006 | MR 2812462
[14] Das P.: Some further results on ideal convergence in topological spaces. Topology Appl. 159 (2012), 2621–2625. DOI 10.1016/j.topol.2012.04.007 | MR 2923430 | Zbl 1250.40002
[15] Das P., Dutta S.: On some types of convergence of sequences of functions in ideal context. Filomat 27 (2013), no. 1, 147–154.
[16] Das P.: Certain types of covers and selection principles using ideals. Houston J. Math. 39 (2013), no. 2, 447–460.
[17] Denjoy A.: Leçons sur le calcul des coefficients d'une série trigonométrique, $2^e$ partie. Paris, 1941.
[18] Di Maio G., Kočinac Lj.D.R.: Statistical convergence in topology. Topology Appl. 156 (2008), 28–45. DOI 10.1016/j.topol.2008.01.015 | MR 2463821 | Zbl 1155.54004
[19] Fast H.: Sur la convergence statistique. Colloq. Math. 2 (1951), 241–244. MR 0048548 | Zbl 0044.33605
[20] Fridy J.A.: On statistical convergence. Analysis 5 (1985), 301–313. MR 0816582 | Zbl 0588.40001
[21] Gerlits J., Nagy Z.: Some properties of $C(X)$, I. Topology Appl. 14 (1984), 145–155. MR 0667661 | Zbl 0503.54020
[22] Jacobs K.: Measure and Integral. Academic Press, New York-London, 1978. MR 0514702 | Zbl 0446.28001
[23] Kostyrko P., Šalát T., Wilczyński W.: $\mathcal{I}$-convergence. Real Anal. Exchange 26 (2000/2001), no. 2, 669–685. MR 1844385
[24] Komisarski A.: Pointwise $\mathcal{I}$-convergence and $\mathcal{I}$-convergence in measure of sequences of functions. J. Math. Anal. Appl. 340 (2008), 770–779. DOI 10.1016/j.jmaa.2007.09.016 | MR 2390885
[25] Lahiri B.K., Das P.: $\mathcal{I}$ and $\mathcal{I}^*$-convergence in topological spaces. Math. Bohemica 130 (2005), 153–160. MR 2148648
[26] Lahiri B.K., Das P.: $\mathcal{I}$ and $\mathcal{I}^*$-convergence of nets. Real Anal. Exchange 33 (2008), no. 2, 431–442. MR 2458259
[27] Mro.zek N.: Ideal version of Egoroff's theorem for analytic $P$-ideals. J. Math. Anal. Appl. 349 (2009), 452–458. DOI 10.1016/j.jmaa.2008.08.032 | MR 2456202
[28] Papanastassiou N.: On a new type of convergence of sequences of functions. Atti Sem. Mat. Fis. Univ. Modena 50 (2002), no. 2, 493–506. MR 1958294 | Zbl 1221.28012
[29] Šalát T.: On statistically convergent sequences of real numbers. Math. Slovaca 30 (1980), 139–150. MR 0587239 | Zbl 0437.40003
[30] Schoenberg I.J.: The integrability of certain functions and related summability methods. Amer. Math. Monthly 66 (1959), 361–375. DOI 10.2307/2308747 | MR 0104946 | Zbl 0089.04002
[31] Van Douven E.K.: The integers and topology. Handbook of Set-theoritic Topology, K. Kunen and J.E. Vaughan (eds.), North-Holland, Amsterdam, 1984. MR 0776622
Partner of
EuDML logo