[1] Aubin, J.-P., Cellina, A.:
Differential Inclusions. Set-Valued Maps and Viability Theory. Grundlehren der Mathematischen Wissenschaften, 264, Springer-Verlag, Berlin (1984).
MR 0755330 |
Zbl 0538.34007
[2] Benamara, M.: "Point Extrémaux, Multi-applications et Fonctionelles Intégrales". Thése de 3éme Cycle, Université de Grenoble (1975).
[9] Klein, E., Thompson, A.:
Theory of Correspondences. Including Applications to Mathematical Economic. Canadian Mathematical Society Series of Monographs and Advanced Texts. A Wiley-Interscience Publication. New York, John Wiley & Sons (1984).
MR 0752692
[11] Tolstonogov, A. A.:
Extremal selections of multivalued mappings and the "bang-bang" principle for evolution inclusions. Sov. Math. Dokl. 43 (1991), 481-485 Translation from Dokl. Akad. Nauk SSSR 317 (1991), 589-593.
MR 1121349 |
Zbl 0784.54024
[14] Papageorgiou, N. S.:
On measurable multifunction with applications to random multivalued equations. Math. Jap. 32 (1987), 437-464.
MR 0914749
[15] Ricceri, O. N., Ricceri, B.:
An existence theorem for inclusions of the type $\Psi (u)(t) \in F(t, \Phi (u)(t))$ and an application to a multivalued boundary value problem. Appl. Anal. 38 (1990), 259-270.
DOI 10.1080/00036819008839966 |
MR 1116184