Previous |  Up |  Next

Article

Keywords:
Krull dimension; derived dimension; inductive dimension; scattered spaces and algebraic lattices
Summary:
Let $(L, \le)$, be an algebraic lattice. It is well-known that $(L, \le)$ with its topological structure is topologically scattered if and only if $(L, \le)$ is ordered scattered with respect to its algebraic structure. In this note we prove that, if $L$ is a distributive algebraic lattice in which every element is the infimum of finitely many primes, then $L$ has Krull-dimension if and only if $L$ has derived dimension. We also prove the same result for $\operatorname{\it spec} L$, the set of all prime elements of $L$. Hence the dimensions on the lattice and on the spectrum coincide.
References:
[1] Birkhoff, G.: Lattice Theory. New York, Providence AMS, 1940. MR 0001959 | Zbl 0063.00402
[2] Erné, M., Gehrke, M., Pultr, A.: Complete congruences on topologies and down–set lattices. Appl. Categ. Structures 15 (2007), 163–184. DOI 10.1007/s10485-006-9054-3 | MR 2306544 | Zbl 1122.06015
[3] Gierz, G., Keimel, K.: Continuous ideal completeness and compactification. Lecture Notes in Math. 871 (1971), 97–124. DOI 10.1007/BFb0089905
[4] Gierz, G. et al.,: A Compendium of Continuous Lattices. Springer–Verlag, New York, 1980. MR 0614752 | Zbl 0452.06001
[5] Hausdorff, F.: Grundzüge einer Theorie der geordneten Mengen. Math. Ann. 65 (4) (1908), 435–505. DOI 10.1007/BF01451165 | MR 1511478
[6] Johnstone, P.: Stone Spaces. Cambridge Stud. Adv. Math., 3, Cambridge University Press, 1986. MR 0861951 | Zbl 0586.54001
[7] Karamzadeh, O. A. S.: On the classical Krull dimension of rings. Fund. Math. 117 (2) (1983), 103–108. MR 0719833 | Zbl 0542.16022
[8] Mislove, M.: When are order scattered and topologically scattered the same?. Orders: Description and Roles (Pouzet, M., Richard, D., eds.), North–Holland Math. Stud., 1984, pp. 61–80. MR 0779845 | Zbl 0553.06007
[9] Mislove, M.: Order–scattered distributive continuous lattices are topologically scattered. Houston J. Math. 11 (4) (1985), 559–573. MR 0837993 | Zbl 0595.06011
[10] Mislove, M.: Topology, domain theory and theoretical computer sciences. Topology Appl. 89 (1–2) (1998), 3–59. DOI 10.1016/S0166-8641(97)00222-8 | MR 1641441
[11] Năstăsescu, C., Van Oystaeyen, F.: Dimensions of ring theory. Mathematics and its Applications, 36, D. Reidel Publishing Company, Dordrecht, 1987. MR 0894033
[12] Niefield, S. B., Rosenthal, K. I.: Spatial sublocales and essential primes. Topology Appl. 26 (3) (1987), 263–269. DOI 10.1016/0166-8641(87)90046-0 | MR 0904472 | Zbl 0621.06007
[13] Puczylowski, E. R.: Gabriel and Krull dimensions of modules over rings graded by finite groups. Proc. Amer. Math. Soc. 105 (4) (1985), 17–224. MR 0973835
[14] Simmons, H.: The lattice theoretic part of topological separation axioms. Proc. Edinb. Math. Soc. 21 (1987), 41–48. DOI 10.1017/S0013091500015868 | MR 0493959
Partner of
EuDML logo