[1] Borel, A., Wallach, N.:
Continuous cohomology, discrete subgroups, and representations of reductive groups. Second edition. cond edition, Math. Surveys Monogr. 67 (2000), xviii+260 pp.
MR 1721403
[3] Cahen, M., Schwachhöfer, L.:
Special symplectic connections. J. Differential Geom. 83 (2) (2009), 229–271.
MR 2577468 |
Zbl 1190.53019
[5] Fedosov, B.:
A simple geometrical construction of deformation quantization. J. Differential Geom. 40 (2) (1994), 213–238.
MR 1293654 |
Zbl 0812.53034
[9] Hotta, R.:
Elliptic complexes on certain homogeneous spaces. Osaka J. Math. 7 (1970), 117–160.
MR 0265519 |
Zbl 0197.47703
[11] Kostant, B.:
Symplectic Spinors. Symposia Mathematica, vol. XIV, Cambridge Univ. Press, 1974, pp. 139–152.
MR 0400304 |
Zbl 0321.58015
[12] Krýsl, S.: Howe duality for metaplectic group acting on symplectic spinor valued forms. accepted in J. Lie Theory.
[13] Krýsl, S.:
Symplectic spinor forms and the invariant operators acting between them. Arch. Math. (Brno) 42 (Supplement) (2006), 279–290.
MR 2322414
[15] Schmid, W.:
Homogeneous complex manifolds and representations of semisimple Lie group. Representation theory and harmonic analysis on semisimple Lie groups. (Sally, P., Vogan, D., eds.), vol. 31, American Mathematical Society, Providence, Rhode-Island, Mathematical Surveys and Monographs, 1989.
MR 1011899
[18] Tondeur, P.:
Affine Zusammenhänge auf Mannigfaltigkeiten mit fast-symplektischer Struktur. Comment. Math. Helv. 36 (1961), 234–244.
DOI 10.1007/BF02566901 |
MR 0138068
[19] Vaisman, I.:
Symplectic Curvature Tensors. Monatshefte für Math., vol. 100, Springer-Verlag, Wien, 1985, pp. 299–327.
MR 0814206