[2] Ding, X., Lu, C., Liu, M. Z.:
Periodic solutions for a semi-ratio-dependent predator-prey system with nonmonotonic functional response and time delay. Nonliear Anal., Real World Appl. 9 (2008), 762-775.
MR 2392373 |
Zbl 1152.34046
[5] Fan, M., Wang, Q., Zhou, X.:
Dynamics of a non-autonomous ratio-dependent predator-prey system. Proc. R. Soc. Edinb. A 133 (2003), 97-118.
MR 1960049
[6] Fan, M., Wang, Q.:
Periodic solutions of a class of nonautonomous discrete time semi-ratio-dependent predator-prey system. Discrete Contin. Dyn. Syst. B 4 (2004), 563-574.
DOI 10.3934/dcdsb.2004.4.563 |
MR 2073960
[7] Freedman, H. I., Mathsen, R. M.:
Persistence in predator-prey systems with ratio-dependent predator influence. Bull. Math. Biol. 55 (1993), 817-827.
DOI 10.1007/BF02460674 |
Zbl 0771.92017
[10] Hsu, S.-B., Hwang, T.-W., Kuang, Y.:
Global analysis of Michaelis-Menten type ratio-dependent predator-prey system. J. Math. Biol. 42 (2001), 489-506.
DOI 10.1007/s002850100079 |
MR 1845589
[11] Jost, C., Arino, O., Arditi, R.:
About deterministic extinction in ratio-dependent \hbox{predator}-prey models. Bull. Math. Biol. 61 (1999), 19-32.
DOI 10.1006/bulm.1998.0072
[12] Kuang, Y.:
Rich dynamics of Gause-type ratio-dependent predator-prey systems. Fields Inst. Commun. 21 (1999), 325-337.
MR 1662624