Article
Keywords:
multi-point boundary value problem; coincidence degree theory; resonance; higher-order ODE; degree arguments
Summary:
Based on the coincidence degree theory of Mawhin, we get a new general existence result for the following higher-order multi-point boundary value problem at resonance \[ \displaylines { x^{(n)}(t)=f(t, x(t), x'(t),\cdots , x^{(n-1)}(t)),\quad t\in (0,1),\cr x(0)=\sum _{i=1}^{m}\alpha _{i}x(\xi _{i}),\quad x'(0)=\cdots =x^{(n-2)}(0)=0,\quad x^{(n-1)}(1)=\sum _{j=1}^{l}\beta _{j}x^{(n-1)}(\eta _{j}),\cr } \] where $f\colon [0, 1]\times \mathbb R^n\rightarrow \mathbb R$ is a Carathéodory function, $0<\xi _{1}<\xi _{2}<\cdots <\xi _{m}<1$, $\alpha _{i}\in \mathbb R$, $i=1,2,\cdots , m$, $m\geq 2$ and $0<\eta _{1}<\cdots <\eta _{l}<1$, $\beta _{j}\in \mathbb R$, $j=1,\cdots , l$, $l\geq 1$. In this paper, two of the boundary value conditions are responsible for resonance.
References:
[9] Mawhin, J.:
Topological degree methods in nonlinear boundary value problems. Regional Conference Series in Mathematics, No. 40. American Mathematical Society (AMS) Providence (1979).
MR 0525202
[11] Xue, C., Du, Z., Ge, W.:
Solutions to $m$-point boundary value problems of third-order ordinary differential equations at resonance. J. Appl. Math. Comput. 17 (2005), 229-244.
DOI 10.1007/BF02936051 |
MR 2108802 |
Zbl 1070.34031