Previous |  Up |  Next

Article

Title: Some cohomological aspects of the Banach fixed point principle (English)
Author: Janoš, Ludvík
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 136
Issue: 3
Year: 2011
Pages: 333-336
Summary lang: English
.
Category: math
.
Summary: Let $T\colon X\to X$ be a continuous selfmap of a compact metrizable space $X$. We prove the equivalence of the following two statements: (1) The mapping $T$ is a Banach contraction relative to some compatible metric on $X$. (2) There is a countable point separating family $\mathcal {F}\subset \mathcal {C}(X)$ of non-negative functions $f\in \mathcal {C}(X)$ such that for every $f\in \mathcal {F}$ there is $g\in \mathcal {C}(X)$ with $f=g-g\circ T$. (English)
Keyword: Banach contraction
Keyword: cohomology
Keyword: cocycle
Keyword: coboundary
Keyword: separating family
Keyword: core
MSC: 54H20
MSC: 54H25
idZBL: Zbl 1249.54081
idMR: MR2893980
DOI: 10.21136/MB.2011.141653
.
Date available: 2011-09-22T15:02:51Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/141653
.
Reference: [1] Bakakhanian, A.: Cohomological Methods in Group Theory.Marcel Dekker, New York (1972).
Reference: [2] Janoš, L.: The Banach contraction mapping principle and cohomology.Comment. Math. Univ. Carolin. 41 (2000), 605-610. MR 1795089
.

Files

Files Size Format View
MathBohem_136-2011-3_8.pdf 195.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo