Title:
|
Some cohomological aspects of the Banach fixed point principle (English) |
Author:
|
Janoš, Ludvík |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
136 |
Issue:
|
3 |
Year:
|
2011 |
Pages:
|
333-336 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $T\colon X\to X$ be a continuous selfmap of a compact metrizable space $X$. We prove the equivalence of the following two statements: (1) The mapping $T$ is a Banach contraction relative to some compatible metric on $X$. (2) There is a countable point separating family $\mathcal {F}\subset \mathcal {C}(X)$ of non-negative functions $f\in \mathcal {C}(X)$ such that for every $f\in \mathcal {F}$ there is $g\in \mathcal {C}(X)$ with $f=g-g\circ T$. (English) |
Keyword:
|
Banach contraction |
Keyword:
|
cohomology |
Keyword:
|
cocycle |
Keyword:
|
coboundary |
Keyword:
|
separating family |
Keyword:
|
core |
MSC:
|
54H20 |
MSC:
|
54H25 |
idZBL:
|
Zbl 1249.54081 |
idMR:
|
MR2893980 |
DOI:
|
10.21136/MB.2011.141653 |
. |
Date available:
|
2011-09-22T15:02:51Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141653 |
. |
Reference:
|
[1] Bakakhanian, A.: Cohomological Methods in Group Theory.Marcel Dekker, New York (1972). |
Reference:
|
[2] Janoš, L.: The Banach contraction mapping principle and cohomology.Comment. Math. Univ. Carolin. 41 (2000), 605-610. MR 1795089 |
. |