Previous |  Up |  Next

Article

Title: Subordination results for some subclasses of analytic functions (English)
Author: El-Ashwah, R. M.
Author: Aouf, M. K.
Author: Shamandy, A.
Author: Ali, E. E.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 136
Issue: 3
Year: 2011
Pages: 311-331
Summary lang: English
.
Category: math
.
Summary: We introduce two classes of analytic functions related to conic domains, using a new linear multiplier Dziok-Srivastava operator $D_{\lambda ,\ell }^{n.q,s}$ $(n\in \mathbb N_{0}=\{ 0,1,\dots \}$, $q\leq s+1$; $q, s\in \mathbb N_{0}$, $0\leq \alpha <1$, $\lambda \geq 0$, $\ell \geq 0).$ Basic properties of these classes are studied, such as coefficient bounds. Various known or new special cases of our results are also pointed out. For these new function classes, we establish subordination theorems and also deduce some corollaries of these results. (English)
Keyword: uniformly convex function
Keyword: subordination
Keyword: conic domain
Keyword: Hadamard product
MSC: 30C45
MSC: 30C50
MSC: 30C80
idZBL: Zbl 1249.30030
idMR: MR2893979
DOI: 10.21136/MB.2011.141652
.
Date available: 2011-09-22T15:02:23Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/141652
.
Reference: [1] Aghalary, R., Azadi, Gh.: The Dziok-Srivastava operator and k-uniformly starlike functions.J. Inequal. Pure Appl. Math. 6 (2005), 1-7. Zbl 1089.30009, MR 2150906
Reference: [2] Al-Oboudi, F. M.: On univalent functions defined by a generalized Salagean operator.Internat. J. Math. Math Sci. 27 (2004), 1429-1436. Zbl 1072.30009, MR 2085011, 10.1155/S0161171204108090
Reference: [3] Al-Oboudi, F. M., Al-Amoudi, K. A.: On classes of analytic functions related to conic domain.J. Math. Anal. Appl. 339 (2008), 655-667. MR 2370683, 10.1016/j.jmaa.2007.05.087
Reference: [4] Aouf, M. K., Mostafa, A. O.: Some properties of a subclass of uniformly convex functions with negative coefficients.Demonstratio Mathematica 61 (2008), 353-370. Zbl 1159.30307, MR 2419912
Reference: [5] Aouf, M. K., Mostafa, A. M.: Some subordination results for classes of analytic functions defined by the Al-Oboudi-Al-Amoudi operator.Arch. Math. 92 (2009), 279-286. Zbl 1165.30313, MR 2496680, 10.1007/s00013-009-2984-x
Reference: [6] Aouf, M. K., Murugusundarmoorthy, G.: On a subclass of uniformly convex functions defined by the Dziok-Srivastava operator.Austral. J. Math. Anal. Appl. 5 (2008), 1-17. MR 2383651
Reference: [7] Attiya, A. A.: On some application of a subordination theorems.J. Math. Anal. Appl. 311 (2005), 489-494. MR 2168412, 10.1016/j.jmaa.2005.02.056
Reference: [8] Bulboaca, T.: Differential Subordinations and Superordinations.Recent Results, House of Scientific Book Publ., Cluj-Napoca (2005).
Reference: [9] Bernardi, S. D.: Convex and starlike univalent functions.Trans. Amer. Math. Soc. 135 (1969), 429-446. Zbl 0172.09703, MR 0232920, 10.1090/S0002-9947-1969-0232920-2
Reference: [10] Bharati, R., Parvatham, R., Swaminathan, A.: On subclasses of uniformly cunvex functions and corresponding class of starlike functions.Tamkang J. Math. 28 (1997), 17-32. MR 1457247
Reference: [11] Catas, A.: On certain classes of $p$-valent functions defined by multiplier transformations.Proceedings of the International Symposium on Geometric Function Theory and Applications: GFTA 2007 Proceedings (İstanbul, Turkey; 20-24 August 2007) (S. Owa, Y. Polatoğlu, Eds.), pp. 241-250, TC İstanbul Kűltűr University Publications, Vol. 91, TC İstanbul Kűltűr University, İstanbul, Turkey (2008).
Reference: [12] Choi, J. H., Saigo, M., Srivastava, H. M.: Some inclusion properties of a certain family of integral operators.J. Math. Anal. Appl. 276 (2002), 432-445. Zbl 1035.30004, MR 1944360, 10.1016/S0022-247X(02)00500-0
Reference: [13] Dziok, J., Srivastava, H. M.: Classes of analytic functions with the generalized hypergeometric function.Applied Math. Comput. 103 (1999), 1-13. MR 1686354, 10.1016/S0096-3003(98)10042-5
Reference: [14] Frasin, B. A.: Subordination results for a class of analytic functions defined by linear operator.J. Inequal. Pure. Appl. Math. 7 (2006), 1-7. MR 2268588
Reference: [15] Goodmen, A. W.: On uniformly convex functions.Ann. Polon. Math. 56 (1991), 87-92. 10.4064/ap-56-1-87-92
Reference: [16] Kanas, S., Wisniowska, A.: Conic regions and k-uniform convexity.Comput. Appl. Math. 105 (1999), 327-336. Zbl 0944.30008, MR 1690599, 10.1016/S0377-0427(99)00018-7
Reference: [17] Kanas, S., Wisniowska, A.: Conic domains and starlike functions.Rev. Roum. Math. Pures Appl. 45 (2000), 647-657. Zbl 0990.30010, MR 1836295
Reference: [18] Kanas, S., Yuguchi, T.: Subclasses of k-uniformly convex and starlike functions defined by generalized derivative II.Publ. Inst. Math. 69 (2001), 91-100. MR 1847833
Reference: [19] Libera, R. J.: Some classes of regular univalent function.Proc. Amer. Math. Soc. 16 (1965), 755-758. MR 0178131, 10.1090/S0002-9939-1965-0178131-2
Reference: [20] Livingston, A. E.: On the radius of univalence of certain analytic functions.Proc. Amer. Math. Soc. 17 (1966), 352-357. Zbl 0158.07701, MR 0188423, 10.1090/S0002-9939-1966-0188423-X
Reference: [21] Ma, W., Minda, D.: Uniformly convex functions.Ann. Polon. Math. 57 (1992), 165-175. Zbl 0760.30004, MR 1182182, 10.4064/ap-57-2-165-175
Reference: [22] Miller, S. S., Mocanu, P. T.: Differential subordinations and univalent functions.Michigan Math. J. 28 (1981), 157-171. Zbl 0439.30015, MR 0616267, 10.1307/mmj/1029002507
Reference: [23] Miller, S. S., Mocanu, P. T.: Differential Subordinations: Theory and Applications.Series of Monographs and Texbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker, New York (2000). Zbl 0954.34003, MR 1760285
Reference: [24] Murugusundaramoorthy, G., Magesh, N.: A new subclass of uniformly convex functions and a corresponding subclass of starlike functions with fixed second coefficient.J. Inequal. Pure Appl. Math. 5 (2004), 1-20. Zbl 1059.30010, MR 2112438
Reference: [25] Noor, K. I., Noor, M. A.: On integral operators.J. Math. Anal. Appl. 238 (1999), 341-352. Zbl 0934.30007, MR 1715487, 10.1006/jmaa.1999.6501
Reference: [26] Prajapat, J. K., Raina, R. K.: Subordination theorem for a certain subclass of analytic functions involving a linear multiplier operator.Indian J. Math. 51 (2009), 267-276. Zbl 1178.30017, MR 2537946
Reference: [27] Rogosinski, W.: On the coefficients of subordinate functions.Proc. London Math. Soc. 48 (1943), 48-82. Zbl 0028.35502, MR 0008625
Reference: [28] Ronning, F.: On starlike functions associated with parabolic regions.Ann. Univ. Mariae Curie-Sklodowska Sect. A 45 (1991), 117-122. MR 1322145
Reference: [29] Ronning, F.: Uniformly convex functions and a corresponding class of starlike functions.Proc. Amer. Math. Soc. 118 (1993), 189-196. MR 1128729, 10.1090/S0002-9939-1993-1128729-7
Reference: [30] Rosy, T., Murugsundarmoorthy, G.: Fractional calculus and its applications to certain subclassof uniformly convex functions.Far East J. Math. Sci. 15 (2004), 231-242. MR 2133425
Reference: [31] Rosy, T., Subramanian, K. G., Murugsundarmoorthy, G.: Neighbourhoods and partial sums of starlike functions based on Ruscheweyh derivatives.J. Inequal. Pure. Appl. Math. 4 (2003), 1-19. MR 2051565
Reference: [32] Salagean, G. S.: Subclasses of univalent functions. Complex Analysis---Fifth Romanian-Finish Seminar, Part I, Bucharest, 1981. Lecture Notes in Math., Vol. 1013, Springer, Berlin, 1983, pp. 362-372.. MR 0738107
Reference: [33] Singh, S.: A subordination theorems for starlike functions.Internat. J. Math. Math. Sci. 24 (2000), 433-435. 10.1155/S0161171200004634
Reference: [34] Singh, S.: A subordination theorems for spirallike functions.Internat. J. Math. Math. Sci. 24 (2004), 433-435. MR 1781509, 10.1155/S0161171200004634
Reference: [35] Srivastava, H. M., Attiya, A. A.: Some subordination result associated with certain subclasses of analytic functions.J. Inequal. Pure Appl. Math. 5 (2004), 1-6. MR 2112435
Reference: [36] Srivastava, H. M., Karlsson, P. W.: Multiple Gaussian Hypergeometric Series.Ellis Horwood Ltd., Chichester, Halsted Press (John Wiley &amp; Sons), New York (1985). Zbl 0552.33001, MR 0834385
Reference: [37] Srivastava, H. M., Mishra, A. K.: Applications of fractional calculus to parabolic starlike and uniformly convex functions.Comput. Math. Appl. 39 (2000), 57-69. Zbl 0948.30018, MR 1740907, 10.1016/S0898-1221(99)00333-8
Reference: [38] Srivastava, H. M., Li, Shu-Hai, Tang, H.: Certain classes of k-uniformly close-to-convex functions and other related functions defined by using the Dziok-Srivastava operator.Bull. Math. Anal. Appl. 3 (2009), 49-63. MR 2578116
Reference: [39] Wilf, H. S.: Subordinating factor sequence for convex maps of the unit circle.Proc. Amer. Math. Soc. vol 12 (1961), 689-693. MR 0125214, 10.1090/S0002-9939-1961-0125214-5
.

Files

Files Size Format View
MathBohem_136-2011-3_7.pdf 311.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo