Previous |  Up |  Next

Article

Keywords:
information source; message; uncertainty; fuzzy set; fuzzy entropy; fuzzy information
Summary:
The information-theoretical entropy is an effective measure of uncertainty connected with an information source. Its transfer from the classical probabilistic information theory models to the fuzzy set theoretical environment is desirable and significant attempts were realized in the existing literature. Nevertheless, there are some open topics for analysis in the suggested models of fuzzy entropy - the main of them regard the formal aspects of the fundamental concepts. Namely their rather additive (i. e., probability-like) than monotonous (typical for fuzzy set theoretical models) structure. The main goal of this paper is to describe briefly the existing state of art, and to suggest and analyze alternative, more fuzzy set theoretical, approaches to the fuzzy entropy developed as a significant characteristic of the information sources, in the information-theoretical sense.
References:
[1] Benvenuti, P., Vivona, D., Divari, M.: Order relations for fuzzy sets and entropy measure. In: New Trends in Fuzzy Systems (E. Mancini, M. Squillante and A. Ventre, eds.). World Scientific 1998, pp. 224–232.
[2] Bronevich, A., Klir, G. J.: Measure of uncertainty for imprecise probabilities. An axiomatic approach. Internat. J. Approx. Reason. 51 (2010), 365–390. DOI 10.1016/j.ijar.2009.11.003 | MR 2592693
[3] Calvo, T., Mayor, G., (eds.), R. Measiar: Aggregation Operators. Physical-Verlag, Heidelberg 2002. MR 1936383
[4] Luca, A. De, Termini, S.: A definition of a non-probabilistic entropy in the setting of fuzzy set theory. Inform. and Control 20 (1972), 301–312. DOI 10.1016/S0019-9958(72)90199-4 | MR 0327383
[5] Fisher, R. A.: Statistical Methods for Research Workers. Olivier and Boyd, Edinburgh 1932.
[6] Forte, B.: Measures of Information: The General Axiomatic Theory. RAIRO Information Théory. Appl. 1999, pp. 63–90. MR 0260479
[7] Hung, W.-L., Yang, M.-S.: Fuzzy entropy on intuitionistic fuzzy sets. Internat. J. of Intelligent Systems 21 (2006), 443–451. DOI 10.1002/int.20131 | Zbl 1091.94012
[8] Fériet, J.-M. Kampé de: La théorie general de l’information et la mesure subjective de l’information. In: Lecture Notes in Math. 398. Springer-Verlag, Heidelberg 1974, pp. 1–35.
[9] Fériet, J.-M. Kampé dé, Forte, B.: Information et probabilité. C. R. Acad. Sci. Paris 265 (1967), 110–114, 142–146, 350–353.
[10] Klement, E.-P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer, Dordrecht 2000. MR 1790096 | Zbl 1010.03046
[11] Klir, G. J., Folger, T. A.: Fuzzy Sets. Uncertainty and Information. Prentice Hall, Englewood Cliffs 1988. MR 0930102 | Zbl 0675.94025
[12] Klir, G. J., Wang, Z.: Generalized Measure Theory. Springer-Verlag, Berlin 2009. MR 2453907 | Zbl 1184.28002
[13] Kolesárová, A., Vivona, D.: Entropy of T-sums and T-products of L-R fuzzy numbers. Kybernetika 37 (2001), 2, 127–145. MR 1839223 | Zbl 1265.03020
[14] Mareš, M.: Computation Over Fuzzy Quantities. CRC-Pres, Boca Raton 1994. MR 1327525
[15] Mareš, M.: Weak arithmetics of fuzzy numbers. Fuzzy Sets and Systems 91 (1997), 2, 143–154. DOI 10.1016/S0165-0114(97)00136-X | MR 1480041
[16] Mareš, M.: Information measures and uncertainty of particular symbols. Kybernetika 47 (2011), 1, 144–163. MR 2807870 | Zbl 1208.94036
[17] Mareš, M., Mesiar, R.: Information in granulated data sources. In: Proc. ICSCCW 2007 (W. Pedrycz, R. Aliev, Mo. Jamshidi, and B. Turksen, eds.), b-Quadrat Verlag, Antalya 2007, pp. 185–194.
[18] Ming, Q., Li, T.-R.: Some properties and new formulae of fuzzy entropy. In: Proc. 2004 IEEE Internat. Conf. on Networking, Sensing and Control, Vol. I, pp. 401–406.
[19] Rathie, P.: Generalization of the non-additive measures of uncertainty and information and their axiomatic characterization. Kybernetika 7 (1971), 2, 125–132. MR 0299351
[20] Rathie, P.: On some new measures of uncertainty, inaccuracy and information and their characterizations. Kybernetika 7 (1971), 394–403. MR 0299352 | Zbl 0224.94035
[21] Rényi, A.: On measures of entropy and information. In: Proc. 4th Berkeley Symp. on Math. Statistics and Probability, 1961, Vol. I, pp. 547–561. MR 0132570
[22] Shannon, C. E., Weawer, W.: A mathematical theory of communication. Bell. Syst. Techn. J. 27 (1948), 379–423, 623–653. DOI 10.1002/j.1538-7305.1948.tb01338.x | MR 0026286
[23] Yao, M., Zhang, S.: Generalized fuzzy entropy and its applications. In: Proc. 4th Internat. Conf. on Signal Processing 1998, Vol. 2, pp. 1197–1200.
[24] Zadeh, L. A.: Fuzzy sets. Inform. and Control 8 (1965), 3, 338–353. DOI 10.1016/S0019-9958(65)90241-X | MR 0219427 | Zbl 0139.24606
[25] Zadeh, L. A.: From computing with numbers to computing with words. IEEE Trans. Circuits and Systems 45 (1999), 105–109. MR 1683230 | Zbl 0954.68513
Partner of
EuDML logo