[2] Carroll, J. D., Chang, J. J.:
Analysis of individual differences in multidimensional scaling via an n-way generalization of Eckart–Young decomposition. Psychometrika 35 (1970), 283–319.
DOI 10.1007/BF02310791 |
Zbl 0202.19101
[3] Lathauwer, L. De, Moor, B. De: From matrix to tensor: multilinear algebra and signal processing. In: 4th Internat. Conf. on Mathematics in Signal Processing, Part I, Warwick 1996, IMA Conf. Series, pp. 1–11.
[4] Díez, F. J., Galán, S. F.:
An efficient factorization for the noisy MAX. Internat. J. Intell. Systems 18 (2003), 2, 165–177.
DOI 10.1002/int.10080
[5] Harshman, R. A.: Foundations of the PARAFAC procedure: Models and conditions for an “explanatory" multi-mode factor analysis. UCLA Working Papers in Phonetics 16 (1970), 1–84.
[7] Jensen, F. V., Lauritzen, S. L., Olesen, K. G.:
Bayesian updating in recursive graphical models by local computation. omputational Statistics Quarterly 4 (1990), 269–282.
MR 1073446
[8] Lauritzen, S. L., Spiegelhalter, D. J.:
Local computations with probabilities on graphical structures and their application to expert systems (with discussion). J. Roy. Statist. Soc., Ser. B 50 (1988), 157–224.
MR 0964177
[10] Olmsted, S. M.: On Representing and Solving Decision Problems. PhD. Thesis, Stanford University 1983.
[11] Team, R Development Core: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna 2008.
[12] Rose, D. J.:
A graph-theoretic study of the numerical solution of sparse positive definite systems of linear equations. Graph Theory Comput. (1972), 183–217.
MR 0341833 |
Zbl 0266.65028
[13] Savický, P., Vomlel, J.:
Exploiting tensor rank-one decomposition in probabilistic inference. Kybernetika 43 (2007), 5, 747–764.
MR 2376335 |
Zbl 1148.68539
[14] Savický, P., Vomlel, J.:
Triangulation heuristics for BN2O networks. In: Tenth European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, ECSQARU 2009, Lecture Notes in Comput. Sci. 5590, Springer, Berlin – Heidelberg 2009, pp. 566–577.
MR 2893316 |
Zbl 1245.62019
[16] Vomlel, J.: Exploiting functional dependence in Bayesian network inference. In: Proc. 18th Conference on Uncertainty in AI (UAI), Morgan Kaufmann Publ. 2002, pp. 528–535.
[17] Vomlel, J., Savický, P.: Arithmetic circuits of the noisy-or models. In: Prof. Fourth European Workshop on Probabilistic Graphical Models (PGM’08), Hirtshals 2005, pp. 297–304.
[18] Wiegerinck, W., Kappen, B., Burgers, W.: Bayesian Networks for Expert Systems: Theory and Practical Applications. In: Interactive Collaborative Information Systems – Studies in Computational Intelligence (R. Babuška and F. C. A. Groen, eds.), Springer-Verlag, Berlin – Heidelberg 2010, pp. 547–578.