[1] Bressan, A.:
Hyperbolic systems of conservation laws. The one dimensional Cauchy problem. Oxford University Press 1998.
MR 1816648
[2] Glimm, J.:
Solutions in the large for nonlinear hyperbolic systems of equations. Comm. Pure Appl. Math. 18 (1965), 697–715.
MR 0194770 |
Zbl 0141.28902
[3] Godlewski, E., Raviart, P. A.:
Hyperbolic Systems of Conservation Laws. Mathematiques & Applications, S. M. A. I., Ellipses, Paris 1991 (in English).
MR 1304494 |
Zbl 0768.35059
[4] Kröner, D.: Numerical Schemes for Conservation Laws. Teubner, Leipzig–Stuttgart 1996.
[5] Kröner, D., Rokyta, M.:
Convergence of upwind finite volume schemes for scalar conservation laws in two dimensions. SIAM J. Numer. Anal. 31, no. 2 (1994), 324–343.
MR 1276703
[6] Kružkov, S. N.: First order quasilinear equations in several independent variables. Math. USSR Sbornik 10, no. 2 (1970), 217–243 (in English).
[7] Lax, P. D.:
Hyperbolic systems of conservation laws II. Comm. Pure Appl. Math. 10 (1957), 537–566.
MR 0093653 |
Zbl 0081.08803
[8] Málek, J., Nečas, J., Rokyta, M., Růžička, M.: Weak and measure-valued solutions to evolutionary partial differential equations. Chapman & Hall 1996.
[9] Rauch, J.:
BV estimates fail for most quasilinear hyperbolic systems in dimension greater than one. Comm. Math. Phys. 106 (1986), 481–484.
MR 0859822
[10] Rokyta, M.: A suitable replacement of the BV condition for finite volume schemes on unstructured grids. In: Numerical Modelling in Continuum Mechanics, Feistauer, M., Rannacher, R., Kozel, K. (eds.), 267–274, Matfyzpress, Praha 2001.
[11] Serre, D.:
Systemes de lois de conservation. Diderot Editeur, 1996.
Zbl 0930.35003
[12] Sever, M.:
Uniqueness failure for entropy solutions of hyperbolic systems of conservation laws. Comm. Pure Appl. Math. 42 (1989), 173–183.
MR 0978703 |
Zbl 0645.35063
[13] Smoller, J.:
Shock Waves and Reaction-Diffusion Equations. Grundlehren der math. Wissenschaften, Bd. 258, Springer-Verlag, Berlin–Heidelberg–New York, 1983 (1st ed.), 1994 (2nd ed.).
MR 1301779 |
Zbl 0508.35002