[2] Adams, D. R., Hedberg, L. I.:
Function spaces and potential theory. SpringerV̄erlag, Berlin 1999.
MR 1411441
[3] Aikawa, H., Essén, M.:
Potential Theory — selected topics. Lecture Notes in Math. 1633, SpringerV̄erlag, Berlin 1996.
MR 1439503
[4] Anger, B.:
Approximation of capacities by measures. In: Lecture Notes in Math. 226, Springer-Verlag, Berlin 1971, 152–170.
MR 0396885
[6] Armitage, D. H., Gardiner, S. J.:
Classical potential theory. Springer-Verlag, London 2001.
MR 1801253 |
Zbl 0972.31001
[7] Arsove, M. G.:
The Wiener-Dirichlet problem and the theorem of Evans. Math. Z. 103 (1968), 184–194.
MR 0220957 |
Zbl 0168.09503
[8] Bliedtner, J., Hansen, W.:
Potential theory — An analytic and probabilistic approach to balayage. Springer-Verlag, Berlin 1986.
MR 0850715 |
Zbl 0706.31001
[9] Carleson, L.:
Lectures on exceptional sets. Van Nostrand, Princeton 1967.
MR 0225986
[10] Dellacherie, C.:
Capacités, rabotages et ensembles analytiques. Séminaire Choquet, G., Rogalski, M., Saint-Raymond, J., 19e année, Initiation à l’Analyse, Publ. Math. Univ. Pierre et Marie Curie 41, Univ. Paris VI, Paris 1980.
MR 0670775 |
Zbl 0504.28002
[11] Dellacherie, C., Meyer, P.-A.:
Probabilités et potentiel. Chapitres I à IV, Hermann, Paris 1975.
MR 0488194 |
Zbl 0323.60039
[12] Denneberg, D.:
Non-additive measure and integral. Kluwer Academic Publishers Group, Dordrecht 1994.
MR 1320048 |
Zbl 0826.28002
[13] Doob, J. L.:
Classical potential theory and its probabilistic counterpart. SpringerV̄erlag, New York 1984.
MR 0731258 |
Zbl 0549.31001
[14] Fan, S. C.:
Integration with respect to an upper measure function. Amer. J. Math. 63 (1941), 319–338.
MR 0003703 |
Zbl 0025.03401
[15] Fuglede, B.:
Capacity as a sublinear functional generalizing an integral. Danske Vid. Selsk. Mat.-Fys. Medd. (7) 38 (1971).
MR 0291488 |
Zbl 0222.31002
[16] Helms, L. L.:
Introduction to potential theory. Wiley-Interscience, New York – London –– Sydney 1969.
MR 0261018 |
Zbl 0188.17203
[17] Choquet, G.:
Theory of capacities. Ann. Inst. Fourier (Grenoble) 5 (1953/54), 131–295.
MR 0080760
[18] Choquet, G.: Lectures on analysis I–III. W. A. Benjamin, Inc., New York–Amsterdam 1969.
[19] Choquet, G.: Vznik teorie kapacit: zamyšlení nad vlastní zkušeností. Pokroky Mat. Fyz. Astronom. 34 (1989), 71–83.
[20] König, H.:
Measure and integration. An advanced course in basic procedures and applications. Springer-Verlag, Berlin 1997.
MR 1633615
[21] Král, J., Netuka, I., Veselý, J.: Teorie potenciálu II., III., IV. SPN, Praha 1972, 1976, 1977.
[22] Kuratowski, K.:
Topology I. Academic Press, New York 1966.
MR 0217751
[23] Lorentz, G. G.:
Who discovered analytic sets?. Math. Inteligencer (4) 23 (2001), 28–32.
MR 1858643
[24] Lukeš, J.: Lebesgueův integrál. Časopis Pěst. Mat. (4) 91 (1966), 371–383.
[25] Lukeš, J., Malý, J.: Measure and integral. Matfyzpress, Praha 1995.
[26] Lukeš, J., Malý, J., Zajíček, L.: Fine topology methods in real analysis and potential theory. Lecture Notes in Math. 1189, Springer-Verlag, Berlin – New York 1986.
[28] Port, S. C., Stone, C. J.:
Brownian motion and classical potential theory. Academic Press, New York 1978.
MR 0492329 |
Zbl 0413.60067
[30] Sedlák, B., Štoll, I.: Elektřina a magnetismus. Academia, Praha 2002.
[31] Wermer, J.:
Potential theory. Lecture Notes in Math. 408, Springer-Verlag, Berlin 1974.
MR 0454033 |
Zbl 0297.31001
[32] Wiener, N.: Certain notions in potential theory. J. Math. Phys. M. I. T. 3 (1924), 24–51.