Previous |  Up |  Next

Article

Keywords:
atomic decompositions; fusion Banach frames; fusion bi-Banach frames
Summary:
For a fusion Banach frame $(\lbrace G_n, v_n\rbrace , S)$ for a Banach space $E$, if $(\lbrace v_n^*(E^*), v_n^*\rbrace ,T)$ is a fusion Banach frame for $E^*$, then $(\lbrace G_n, v_n\rbrace , S; \lbrace v_n^*(E^*), v_n^*\rbrace ,T)$ is called a fusion bi-Banach frame for $E$. It is proved that if $E$ has an atomic decomposition, then $E$ also has a fusion bi-Banach frame. Also, a sufficient condition for the existence of a fusion bi-Banach frame is given. Finally, a characterization of fusion bi-Banach frames is given.
References:
[1] Benedetto, J. J., Fickus, M.: Finite normalized tight frames. Adv. Comput. Math. 18 (2–4) (2003), 357–385. DOI 10.1023/A:1021323312367 | MR 1968126 | Zbl 1028.42022
[2] Casazza, P. G.: Custom Building finite frames. Wavelets, Frames and Operator Theory (Heil, C., Jorgensen, P. E. T., Larson, D. R., eds.), vol. 345, Contemp. Math., 2004, pp. 81–86. MR 2066822 | Zbl 1082.42024
[3] Christensen, O.: An Introduction to Frames and Reisz Bases. Birkhäuser, 2002.
[4] Daubechies, I., Grossmann, A., Meyer, Y.: Painless non-orthogonal expansions. J. Math. Phys. 27 (1986), 1271–1283. DOI 10.1063/1.527388 | MR 0836025
[5] Duffin, R. J., Schaeffer, A. C.: A class of non-harmonic Fourier Series. Trans. Amer. Math. Soc. 72 (1952), 341–366. DOI 10.1090/S0002-9947-1952-0047179-6 | MR 0047179
[6] Feichtinger, H. G., Gröchenig, K.: A unified approach to atomic decompositons via integrable group representations. Proc. Conf. Function Spaces and Applications, Lecture Notes in Math. 1302, Berlin-Heidelberg-New York, Springer, 1988, pp. 52–73. MR 0942257
[7] Gröchenig, K.: Describing functions: Atomic decompositions versus frames. Monatsh. Math. 112 (1991), 1–41. DOI 10.1007/BF01321715 | MR 1122103
[8] Jain, P. K., Kaushik, S. K., Gupta, N.: On near exact Banach frames in Banach spaces. Bull. Austral. Math. Soc. 78 (2008), 335–342. DOI 10.1017/S0004972708000889 | MR 2466869 | Zbl 1214.42060
[9] Jain, P. K., Kaushik, S. K., Kumar, V.: Frames of subspaces for Banach spaces. Int. J. Wavelets Multiresolut. Inf. Process. 8 (2) (2010), 243–252. DOI 10.1142/S0219691310003481 | MR 2651164
[10] Jain, P. K., Kaushik, S. K., Vashisht, L. K.: Banach frames for conjugate Banach spaces. Z. Anal. Anwendungen 23 (4) (2004), 713–720. DOI 10.4171/ZAA/1217 | MR 2110399 | Zbl 1059.42024
[11] Jain, P. K., Kaushik, S. K., Vashisht, L. K.: On Banach frames. Indian J. Pure Appl. Math. 37 (5) (2006), 265–272. MR 2271627 | Zbl 1125.46013
Partner of
EuDML logo