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A NOTE ON FUSION BANACH FRAMES

S. K. Kaushik and Varinder Kumar

Abstract. For a fusion Banach frame ({Gn, vn}, S) for a Banach
space E, if ({v∗n(E∗), v∗n}, T ) is a fusion Banach frame for E∗, then
({Gn, vn}, S; {v∗n(E∗), v∗n}, T ) is called a fusion bi-Banach frame for E. It
is proved that if E has an atomic decomposition, then E also has a fusion
bi-Banach frame. Also, a sufficient condition for the existence of a fusion
bi-Banach frame is given. Finally, a characterization of fusion bi-Banach
frames is given.

1. Introduction

Frames for Hilbert spaces were introduced by Duffin and Schaeffer [5] in 1952
and re-introduced in 1986 by Daubechies, Grossmann and Meyer [4]. Casazza [2]
and Benedetto and Fickus [1] have studied frames in finite dimensional spaces
which attracted more attention due to their use in signal processing. Frames are
now used as a tool in many areas like data compression, sampling theory, optics,
filter banks, signal detection, time-frequency analysis etc.

The concept of frames in Hilbert spaces was extended to Banach spaces by
Feichtinger and Gröchenig [6] who introduced the concept of atomic decompositions
in Banach spaces. This concept was further generalized by Gröchenig [7] who
introduced the notion of Banach frames for Banach spaces. Jain et al. [9], generalized
Banach frames in Banach spaces and introduced frames of subspaces (Fusion Banach
frames) for Banach spaces. They gave the following definition of a fusion Banach
frame.

Definition 1.1 ([9]). Let E be a Banach space. Let {Gn} be a sequence of
non-trivial subspaces of E and {vn} be a sequence of bounded linear projections
such that vn(E) = Gn, n ∈ N. We associate a Banach space A and an operator
S : A → E with the space E. Then ({Gn, vn}, S) is called a frame of subspaces
(fusion Banach frame) for E with respect to A if

(i) {vn(x)} ∈ A, for all x ∈ E,
(ii) there exist constants A, B (0 < A ≤ B <∞) such that

A‖x‖E ≤ ‖{vn(x)}‖A ≤ B‖x‖E , x ∈ E ,
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(iii) S is a bounded linear operator such that
S({vn(x)}) = x , x ∈ E .

The following lemma, proved in [9], is used in the sequel

Lemma 1.2. Let {Gn} be a sequence of non-trivial subspaces of E and {vn} be a
sequence of bounded linear projections with vn(E) = Gn, n ∈ N. If {vn} is total
over E, i.e., {x ∈ E : vn(x) = 0, for all n ∈ N} = {0}, then A = {{vn(x)} : x ∈ E}
is a Banach space with norm ‖{vn(x)}‖A = ‖x‖E, x ∈ E.

For other related notions on frames in Banach spaces one may refer to
[3, 8, 10, 11].

In the present paper, we introduce fusion bi-Banach frames for a Banach space
E. We prove that if E has an atomic decomposition, then E also has a fusion
bi-Banach frame. Also, a sufficient condition for the existence of fusion bi-Banach
frames is given. Finally, a characterization of fusion bi-Banach frames is obtained.

2. Main Results

One may observe that, if ({Gn, vn}, S) is a fusion Banach frame for E with
respect to some associated Banach space A, then there may not exist a Banach
space A1 associated with E∗ together with an operator T : A1 → E∗ such that
({v∗n(E∗), v∗n}, T ) is a fusion Banach frame for E∗ with respect to A1.

In this regard, we have the following examples

Example 2.1. Consider the Banach space
E = `∞(X) =

{
{xn} : xn ∈ X; sup

1≤n<∞
‖xn‖X <∞

}
equipped with the norm ‖{xn}‖E = sup

1≤n<∞
‖xn‖X , {xn} ∈ E, where (X, ‖ · ‖) is

a Banach space. For each n ∈ N, define Gn = {δxn : x ∈ X} and vn(x) = δxnn ,
x = {xn} ∈ E, where δxn = (0, 0, . . . , 0, x

↓
n-th place

, 0, . . .) for all n ∈ N and x ∈ X. Then

by Lemma 1.2, there exist an associated Banach space A = {{vn(x)} : x ∈ E}
with norm ‖{vn(x)}‖A = ‖x‖E , x ∈ E together with an operator S : A → E given
by S({vn(x)}) = x, x ∈ E such that ({Gn, vn}, S) is a fusion Banach frame for E
with respect to A. But, there does not exist a Banach space A1 associated with
E∗ together with an operator T : A1 → E∗ such that ({v∗n(E∗), v∗n}, T ) is a fusion
Banach frame for E∗ with respect to A1. For otherwise,

[ ∞⋃
n=1

Gn
]

= E, which is
not true.

Example 2.2. Let E be a Banach space defined as
E = c0(X) =

{
{xn} : xn ∈ X; lim

n→∞
‖xn‖X = 0

}
equipped with the norm given by

‖{xn}‖E = sup
1≤n<∞

‖xn‖X , where (X, ‖ · ‖) is a Banach space.
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Define a sequence {Gn} of subspaces of E by

G2n−1 = {δx2n−1 − 2n−1δx2n : x ∈ X}

G2n = {δx2n : x ∈ X} .

Also define operators vn on E by

v2n−1(x) = δ
x2n−1
2n−1 − 2n−1δ

x2n−1
2n

v2n(x) = δ
2n−1x2n−1+x2n
2n for all x = {xn} ∈ E and n ∈ N .

Then by Lemma 1.2 there exist an associated Banach space A and an operator
S : A → E such that ({Gn, vn}, S) is a fusion Banach frame for E with respect to
A.

If
[ ∞⋃
n=1

Gn
]
6= E, then there exists 0 6= f = {fi} ∈ E∗ such that f(y) = 0

for all y ∈ Gn, n ∈ N. This would imply fn = 0 for all n ∈ N and hence f = 0.
Therefore, by Lemma 1.2 again, there exist a Banach space A1 associated to E∗
and an operator T : A1 → E∗ such that ({v∗n(E∗), v∗n}, T ) is a fusion Banach frame
for E∗ with respect to A1.

In view of the above discussion, we define the following

Definition 2.3. Let E be a Banach space. Let {Gn} be a sequence of non-trivial
subspaces of E and {vn} be a sequence of bounded linear projections such that
vn(E) = Gn, n ∈ N. If there exist Banach spaces A and A1 associated with
E and E∗ respectively and operators S : A → E and T : A1 → E∗ such that
({Gn, vn}, S) is a fusion Banach frame for E with respect to A and ({v∗n(E∗), v∗n}, T )
is a fusion Banach frame for E∗ with respect to A1, then we call the system
({Gn, vn}, S; {v∗n(E∗), v∗n}, T ) a fusion bi-Banach frame for E

In view of Remark 3.2.1 in [9], we have
Every reflexive Banach space has a fusion bi-Banach frame.
Recall that if E is a Banach space and Ed is an associated Banach space of

scalar-valued sequences, indexed by N, {xn} is a sequence in E and {fn} is a
sequence in E∗, then the pair ({fn}, {xn}) is called an atomic decomposition for E
with respect to Ed if

(i) {fn(x)} ∈ Ed, x ∈ E;
(ii) there exist constants A,B with 0 < A ≤ B <∞ such that

A‖x‖E ≤ ‖{fn(x)}‖Ed ≤ B‖x‖E , x ∈ E ;

(iii) x =
∞∑
n=1

fn(x)xn, x ∈ E.

The next result is regarding the existence of fusion bi-Banach frames for a
Banach space having an atomic decomposition.

Theorem 2.4. Let E be a Banach space. If E has an atomic decomposition, then
it also has a fusion bi-Banach frame.
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Proof. Let ({fn}, {xn}) be an atomic decomposition for E with respect to Ed.
Define Gn = [xn], n ∈ N and vn(x) = fn(x)xn, n ∈ N. Then there exist an
associated Banach space A = {{vn(x)} : x ∈ E} together with an operator
S : A → E such that ({Gn, vn}, S) is a fusion Banach frame for E with respect
to A. Further

[ ∞⋃
n=1

Gn
]

= E (as [xn] = E). So, v∗n(f) = 0 for all n ∈ N imply

f = 0, where f ∈ E∗. Thus, {v∗n} is total over E∗ and so by Lemma 1.2, there
exist an associated Banach space A1 and an operator T : A1 → E∗ such that
({v∗n(E∗), v∗n}, T ) is a fusion Banach frame for E∗ with respect to A1. Hence,
({Gn, vn}, S; {v∗n(E∗), v∗n}, T ) is a fusion bi-Banach frame for E. �

Next, we observe that if E be a Banach space and {Gn} be a sequence of
non-trivial subspaces of E with associated sequence of projections {vn} with
vn(E) = Gn, n ∈ N, then it is possible that there exist a Banach space A1
associated with E∗ together with a bounded linear operator T : A1 → E∗ such that
({v∗n(E∗), v∗n}, T ) is a fusion Banach frame for E∗ with respect to A1 and there
may not exist any Banach space A associated with E together with an operator
S : A → E such that ({Gn, vn}, S) is a fusion Banach frame for E with respect to
A. Indeed, let

E = `2(X) =
{
{xn} : xn ∈ X;

∞∑
n=1
‖xn‖2

X <∞
}
,

where (X, ‖ · ‖) is a Banach space, equipped with the norm given by

‖{xn}‖E =
( ∞∑
n=1
‖xn‖2

X

)1/2
.

Define for n ∈ N, Gn = {δx1 + δxn+1 : x ∈ X} and vn(x) = δ
xn+1
1 + δ

xn+1
n+1 ,

x = {xn} ∈ E, where δxn = (0, 0, . . . , 0, x
↓

nth place

, 0, . . .), x ∈ X.

Then
[ ∞⋃
n=1

Gn
]

= E and vivj = 0 for all i 6= j.

But, since for any 0 6= x ∈ X, δx1 = (x, 0, 0, . . .) ∈ E is such that vn(δx1 ) = 0, for
all n ∈ N , there exist no associated Banach space A such that ({Gn, vn}, S) is a
fusion Banach frame for E with respect to A. However, there exist a Banach space
A0 and an operator T : A0 → E∗ such that ({v∗n(E∗), v∗n}, T ) is a fusion Banach
frame for E∗ with respect to A0.

In view of the above discussion, we prove the following result

Theorem 2.5. Let E be a Banach space and {Gn} be a sequence of subspaces
of E with

[ ∞⋃
n=1

Gn
]

= E. Let {vn} be a sequence of projections on E satisfying

vn(E) = Gn, n ∈ N and vivj = 0 for all i 6= j. Then there exist Banach spaces
A and A1 associated with E and E∗, respectively, and operators S : A → E and
T : A1 → E∗ such that ({Gn, vn}, S; {v∗n(E∗), v∗n}, T ) is a fusion bi-Banach frame
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for E if every sequence {xn} ⊂ E such that xn ∈ Gn and xn 6= 0, n ∈ N satisfies
∞⋂
n=1

[xn+1, xn+2, . . .] = {0}.

Proof. Since
[ ∞⋃
n=1

Gn
]

= E, there exist an associated Banach space A1 and

a bounded linear operator T : A1 → E∗ such that ({v∗n(E∗), v∗n}, T ) is a fusion
Banach frame for E∗ with respect to A1. Let, if possible, there exist no Banach
space A associated with E such that ({Gn, vn}, S) is a fusion Banach frame for
E with respect to A where S : A → E is a bounded linear operator. Now, since[ ∞⋃
n=1

Gn
]

= E and vivj = 0 for all i 6= j, un =
n∑
i=1

vi is a bounded linear projection

of E onto
[ n⋃
i=1

Gi
]

along
[ ∞⋃
i=n+1

Gi

]
, n ∈ N. Write E =

[ n⋃
i=1

Gi
]
⊕
[ ∞⋃
i=n+1

Gi
]
,

n ∈ N. Then

{x ∈ E : vi(x) = 0, i = 1, 2, . . . , n} =
[ ∞⋃
i=n+1

Gi

]
, n ∈ N .

Since ({Gn, vn}, S) is not a fusion Banach frame for E with respect to any
associated Banach space, there exists 0 6= x ∈

∞⋂
n=1

[ ∞⋃
i=n+1

Gi
]
. So, there exists

y1 =
m1∑
i=1

zi where zi ∈ Gi (1 ≤ i ≤ m1) such that dist(x, y1) < 1, that is,

dist
(
x,
[ m1⋃
i=1

Gi
])
< 1. Also, x ∈

[ ∞⋃
i=m1+1

Gi
]
. So, we can choose m2 > m1 and

y2 =
m2∑

i=m1+1
zi, where zi ∈ Gi (m1 + 1 ≤ i ≤ m2) such that dist

(
x,
[ m2⋃
i=m1+1

Gi
])
<

1
2 . Proceeding like this, for each n ∈ N, we get a sequence {zn} ⊂ E and an
increasing sequence {mn} of positive integers such that zn ∈ Gn, n ∈ N and
dist

(
x,
[ mn⋃
i=mn−1+1

Gi
])
<

1
n

.

Thus x ∈ [zn+1, zn+2, . . . ], n ∈ N. Consider a sequence {xn} ⊂ E with 0 6= xn ∈ Gn,
n ∈ N such that xn = zn whenever zn 6= 0. Then x ∈ [xn+1, xn+2, . . . ], n ∈ N.
Hence

∞⋂
n=1

[xn+1, xn+2, . . . ] 6= {0}. �

Finally, we give a characterization of fusion bi-Banach frames in terms of a
sequence in bv0, where bv0 is the linear space of all sequences {αn} of scalars with
lim
n→∞

αn = 0 and for which the norm ‖{αn}‖ =
∞∑
n=1
|αn+1 − αn| is finite.

Theorem 2.6. Let E be a Banach space and ({Gn, vn}, S) be a fusion Banach
frame for E, where the projections {vn} on E are such that vivj = 0 for all i 6= j.
Then ({Gn, vn}, S; {v∗n(E∗), v∗n}, T ) is a fusion bi-Banach frame for E if and only
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if for every x ∈ E, there exist {αj} ∈ bv0 and z ∈ E such that vn(x) = αnvn(z),

n ∈ N and sup
1≤n<∞

∥∥ n∑
i=1

vi(z)
∥∥ <∞.

Proof. Let ({Gn, vn}, S; {v∗n(E∗), v∗n}, T ) be a fusion bi-Banach frame for E. For

each k ∈ N, write uk =
k∑
i=1

vi. Then lim
k→∞

uk(x) = x, x ∈ E. Therefore, there exists

a sequence {mn} of positive integers such that

‖x− uk(x)‖ < 1
4n+1 , k ≥ mn , n ∈ N .

Take yn =
mn∑

i=mn−1+1
vi(x), n ∈ N. Then ‖yn‖ ≤

2
4n , n ∈ N.

So,
∞∑
n=1

2n−1‖yn‖ ≤
∞∑
n=1

2−n. Thus, the series
∞∑
n=1

2n−1yn converges.

Put z =
∞∑
n=1

2n−1yn and αj = 21−n,mn−1 + 1 ≤ j ≤ mn, n ∈ N.

Therefore, {αj} ∈ bv0. Also, we have

vj(z) = 2n−1vj(x) , mn−1 + 1 ≤ j ≤ mn , n ∈ N .

Hence, vj(x) = αjvj(z), j ∈ N.
Conversely, for integers p < q, we have∥∥∥ q∑

i=p
vi(x)

∥∥∥ =
∥∥∥ q∑
i=p

αi

( i∑
j=1

vj(z)−
i−1∑
j=1

vj(z)
)∥∥∥

≤
(
|αp|+

q−1∑
i=p
|αi − αi+1|+ |αq|

)
sup

1≤n<∞

∥∥∥ n∑
j=1

vj(z)
∥∥∥

Since, {αj} ∈ bv0,
{ n∑
i=1

vi(x)
}

is a Cauchy sequence and hence converges.

Also, since {vn} is total on E and

vj

(
x− lim

n→∞

n∑
i=1

vi(x)
)

= 0 , for all j ∈ N ,

it follows that x = lim
n→∞

n∑
i=1

vi(x). Therefore,
[ ∞⋃
n=1

Gi

]
= E. Thus, {v∗n} is total

over E∗ and so by Lemma 1.2, there exist a Banach space A1 associated with
E∗ and an operator T : A1 → E∗ such that ({v∗n(E∗), v∗n}, T ) is a fusion Banach
frame for E∗ with respect to A1. Hence, ({Gn, vn}, S; {v∗n(E∗), v∗n}, T ) is a fusion
bi-Banach frame for E. �
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