[1] Berkovich, Y., Kazarin, L.:
Finite groups in which the zeros of every nonlinear irreducible character are conjugate modulo its kernel. Houston J. Math. 24 (1998), 619-630.
MR 1686628 |
Zbl 0969.20004
[2] Bianchi, M., Chillag, D., Gillio, A.:
Finite groups in which every irreducible character vanishes on at most two conjugacy classes. Houston J. Math. 26 (2000), 451-461.
MR 1811932 |
Zbl 0986.20006
[3] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A.:
Atlas of Finite Groups. Oxford Univ. Press, Oxford and New York (1985).
MR 0827219 |
Zbl 0568.20001
[8] Huppert, B., Blackburn, N.:
Finite groups III. Springer-Verlag, Berlin, New York (1982).
MR 0662826 |
Zbl 0514.20002
[15] Manz, O., Wolf, T. R.:
Representations of solvable groups. Cambridge University Press, Cambridge (1993).
MR 1261638 |
Zbl 0928.20008
[18] Qian, G. H., Shi, W. J.:
A characterization of $ L_2(2^f)$ in terms of the number of character zeros. Contributions to Algebra and Geometry 1 (2009), 1-9.
MR 2499777
[20] Ren, Y. C., Zhang, J. S.:
On zeros of characters of finite groups and solvable $\varphi$-groups. Adv. Math. (China) 37 (2008), 426-436.
MR 2463235
[23] Veralopez, A., Veralopez, J.:
Classification of finite groups according to the number of conjugacy classes. Israel J. Math. 51 (1985), 305-338.
DOI 10.1007/BF02764723 |
MR 0804489
[26] Zhang, J. S., Shi, J. T., Shen, Z. C.:
Finite groups whose irreducible characters vanish on at most three conjugacy classes. (to appear) in J. Group Theory.
MR 2736158