Previous |  Up |  Next

Article

Keywords:
neighborhoods; partial sums; integral means; generalized Ruscheweyh derivative
Summary:
By making use of the known concept of neighborhoods of analytic functions we prove several inclusions associated with the $(j,\delta )$-neighborhoods of various subclasses of starlike and convex functions of complex order $b$ which are defined by the generalized Ruscheweyh derivative operator. Further, partial sums and integral means inequalities for these function classes are studied. Relevant connections with some other recent investigations are also pointed out.
References:
[1] Ahuja, O. P.: Fekete-Szegö Problem for a unified class of analytic functions. Panam. Math. J. 7 (1997), 67-78. MR 1442222 | Zbl 0878.30010
[2] Ahuja, O. P.: Integral operators of certain univalent functions. Int. J. Math. Math. Sci. 8 (1985), 653-662. DOI 10.1155/S0161171285000710 | MR 0821620 | Zbl 0594.30012
[3] Ahuja, O. P.: Hadamard products of analytic functions defined by Ruscheweyh derivatives. In: Current Topics in Analytic Function Theory H. M. Srivastava, S. Owa World Scientific Publishing Company Singapore (1992), 13-28. MR 1232426 | Zbl 1002.30007
[4] Altintaş, O., Owa, S.: Neighborhoods of certain analytic functions with negative coefficients. Int. J. Math. Math. Sci. 19 (1996), 797-800. DOI 10.1155/S016117129600110X | MR 1397848
[5] Aouf, M. K.: Neighborhoods of certain classes of analytic functions with negative coefficients. Int. J. Math. Math. Sci. 2006 (2006), 1-6. DOI 10.1155/IJMMS/2006/38258 | MR 2251704 | Zbl 1118.30006
[6] Cho, N. C., Owa, S.: Partial sums of meromorphic functions. JIPAM, J. Ineq. Pure Appl. Math. 5 (2004), Art. 30 Electronic only. MR 2085674
[7] Goodman, A. W.: Univalent functions and nonanalytic curves. Proc. Am. Math. Soc. 8 (1957), 598-601. DOI 10.1090/S0002-9939-1957-0086879-9 | MR 0086879
[8] Keerthi, B. S., Gangadharan, A., Srivastava, H. M.: Neighborhoods of certain subclasses of analytic functions of complex order with negative coefficients. Math. Comput. Modelling 47 (2008), 271-277. DOI 10.1016/j.mcm.2007.04.004 | MR 2378834 | Zbl 1140.30005
[9] Latha, S., Shivarudrappa, L.: Partial sums of meromorphic functions. JIPAM, J. Ineq. Pure Appl. Math. 7 (2006), Art. 140 Electronic only. MR 2268594
[10] Littlewood, J. E.: On inequalities in the theory of functions. Proc. Lond. Math. Soc. 23 (1925), 481-519. DOI 10.1112/plms/s2-23.1.481
[11] Murugunsundaramoorthy, G., Srivastava, H. M.: Neighborhoods of certain classes of analytic functions of complex order. JIPAM, J. Ineq. Pure Appl. Math. 5 (2004), Art. 24 Electronic only. MR 2085668
[12] Nasr, M. A., Aouf, M. K.: Starlike function of complex order. J. Nat. Sci. Math. 25 (1985), 1-12. MR 0805912 | Zbl 0596.30017
[13] Orhan, H.: On neighborhoods of analytic functions defined by using Hadamard product. Novi Sad J. Math. 37 (2007), 17-25. MR 2402046 | Zbl 1164.30010
[14] Orhan, H.: Neighborhoods of a certain class of $p$-valent functions with negative coefficients defined by using a differential operator. Math. Ineq. Appl. 12 (2009), 335-349. MR 2521398 | Zbl 1162.30315
[15] Owa, S., Sekine, T.: Integral means of analytic functions. J. Math. Anal. Appl. 304 (2005), 772-782. DOI 10.1016/j.jmaa.2004.09.056 | MR 2127606 | Zbl 1131.30367
[16] Raina, R. K., Bansal, D.: Some properties of a new class of analytic functions defined in terms of a Hadamard product. JIPAM, J. Ineq. Pure Appl. Math. 9 (2008), Art. 22 Electronic only. MR 2391289 | Zbl 1165.30339
[17] Robertson, M. S.: On the theory of univalent functions. Ann. Math. 37 (1936), 374-408. DOI 10.2307/1968451 | MR 1503286 | Zbl 0014.16505
[18] Ruscheweyh, S.: Neighborhoods of univalent functions. Proc. Am. Math. Soc. 81 (1981), 521-527. DOI 10.1090/S0002-9939-1981-0601721-6 | MR 0601721 | Zbl 0458.30008
[19] Ruscheweyh, S.: New criteria for univalent functions. Proc. Am. Math. Soc. 49 (1975), 109-115. DOI 10.1090/S0002-9939-1975-0367176-1 | MR 0367176 | Zbl 0303.30006
[20] Silverman, H.: Univalent functions with negative coefficients. Proc. Am. Math. Soc. 51 (1975), 109-116. DOI 10.1090/S0002-9939-1975-0369678-0 | MR 0369678 | Zbl 0311.30007
[21] Silverman, H.: Neighborhoods of classes of analytic functions. Far East J. Math. Sci. 3 (1995), 165-169. MR 1385117 | Zbl 0935.30009
[22] Silverman, H.: Partial sums of starlike and convex functions. J. Math. Anal. Appl. 209 (1997), 221-227. DOI 10.1006/jmaa.1997.5361 | MR 1444523 | Zbl 0894.30010
[23] Silverman, H.: Subclasses of starlike functions. Rev. Roum. Math. Pures Appl. 23 (1978), 1093-1099. MR 0509608 | Zbl 0389.30005
[24] Silverman, H., Silvia, E. M.: Subclasses of starlike functions subordinate to convex functions. Can. J. Math. 37 (1985), 48-61. DOI 10.4153/CJM-1985-004-7 | MR 0777038 | Zbl 0574.30015
[25] Sohi, N. S., Singh, L. P.: A class of bounded starlike functions of complex order. Indian J. Pure Appl. Math. 33 (1991), 29-35. MR 1088617 | Zbl 0721.30005
[26] Srivastava, H. M., Orhan, H.: Coefficient inequalities and inclusion relations for some families of analytic and multivalent functions. Appl. Math. Lett. 20 (2007), 686-691. DOI 10.1016/j.aml.2006.07.009 | MR 2314414 | Zbl 1111.30012
[27] Srivastava, H. M., (Eds.), S. Owa: Current Topics in Analytic Function Theory. World Scientific Publishing Company Singapore-New Jersey-London-Hong Kong (1992). MR 1232424 | Zbl 0976.00007
[28] Wiatrowski, P.: The coefficients of a certain family of holomorphic functions. Zeszyty Nauk. Univ. Lodz, Nauki Mat. Przyrod. Ser. II, Zeszyt 39 (1971), 75-85 Polish. MR 0338350
Partner of
EuDML logo