Previous |  Up |  Next

Article

Keywords:
Laplacian eigenvalue; multiplicity; tree; characteristic polynomial
Summary:
In this paper we investigate the effect on the multiplicity of Laplacian eigenvalues of two disjoint connected graphs when adding an edge between them. As an application of the result, the multiplicity of 1 as a Laplacian eigenvalue of trees is also considered.
References:
[1] Cvetković, D. M., Doob, M., Sachs, H.: Spectra of Graphs-Theory and Application. Deutscher Verlag der Wissenschaften - Academic Press, Berlin-New York, 1980; second edition 1982; third edition, Johann Ambrosius Barth Verlag, Heidelberg-Leipzig (1995).
[2] Faria, I.: Permanental roots and the star degree of a graph. Linear Algebra Appl. 64 (1985), 255-265. DOI 10.1016/0024-3795(85)90281-2 | MR 0776531 | Zbl 0559.05041
[3] Grone, R., Merris, R., Sunder, V. S.: The Laplacian spectrum of a graph. SIAM J. Matrix Anal. Appl. 11 (1990), 218-238. DOI 10.1137/0611016 | MR 1041245 | Zbl 0733.05060
[4] Grone, R., Merris, R.: The Laplacian spectrum of a graph II*. SIAM J. Discrete Math. 7 (1994), 221-229. DOI 10.1137/S0895480191222653 | MR 1271994 | Zbl 0795.05092
[5] Guo, J. M.: On the second largest Laplacian eigenvalue of trees. Linear Alg. Appl. 404 (2005), 251-261. DOI 10.1016/j.laa.2005.02.031 | MR 2149662 | Zbl 1066.05085
[6] Mohar, B.: The Laplacian spectrum of graphs. Graph Theory, Combinatorics, and Applications 2 (1991), 871-898. MR 1170831 | Zbl 0840.05059
[7] Shao, J. Y., Guo, J. M., Shan, H. Y.: The ordering of trees and connected graphs by algebraic connectivity. Linear Alg. Appl. 428 (2008), 1421-1438. MR 2388629 | Zbl 1134.05063
Partner of
EuDML logo