Previous |  Up |  Next

Article

MSC: 03-xx
References:
[1] Barwise, J.: Admissible sets and structures. Springer-Verlag 1975. MR 0424560 | Zbl 0316.02047
[2] Ebbinghaus, H. D., Flum, J., Thomas, W.: Mathematical Logic. Springer-Verlag 1984. MR 0736838 | Zbl 0556.03001
[3] Ebbinghaus, H. D., Flum, J.: Finite model theory. Springer-Verlag 1993.
[4] Fiala, J.: Je elementární logika totéž co predikátová logika 1. řádu?. Pokroky matematiky, fyziky a astronomie 42 (1997), 127–133.
[5] Gabbay, D., Guenther, F.: Handbook of Philosophical Logic. Vol. II (1994), Vol. III (1996), Kluwer.
[6] Gottwald, S.: Mehrwertige Logik. Akademie-Verlag, Berlin, 1988. MR 1117450
[7] Gottwald, S.: Fuzzy sets and fuzzy logic. Viehweg 1995.
[8] Hájek, P.: Fuzzy logic from the logical point of view. In SOFSEM’95: Theory and Practice of Informatics; Lecture Notes in Computer Science 1012 (Milovy, Czech Republic, 1995), M. Bartošek, J. Staudek, and J. Wiedermann, Eds., Springer-Verlag, pp. 31–49.
[9] Hájek, P.: Metamathematics of fuzzy logic. Vyjde v nakladatelství Kluwer.
[10] Keisler, H. J.: Logic with the quantifier “there are uncountably many”. Annals of Math. Logic 1 (1970), 1–93. MR 0263616
[11] Keisler, H. J.: Probability quantifiers. In: (Barwise and Feferman, ed.) Model-theoretic logics, Springer-Verlag 1985, 579–596. MR 0819545
[12] Krynicki, M., Mostowski, M., Szczerba, L. W.: Quantifiers: logic, models, computation. Vol. I. Kluwer 1995.
[13] Monk, D.: Mathematical logic. Springer-Verlag 1976. MR 0465767 | Zbl 0354.02002
Partner of
EuDML logo