[1] BALÁŽ, V., ŠALÁT, T.: Uniform density $u$ and corresponding $I_u$-convergence. Math. Communication 11 (2006), 1–7.
[2] BROWN, T.C., FREEDMAN, A.R.:
Arithmetic progressions in lacunary sets. Mountain J. Math. 17 (1987), 587–596.
MR 0908265
[3] BROWN, T.C., FREEDMAN, A.R.:
The uniform density of sets of integers and Fermat’s Last Theorem. C. R. Math. Ref. Acad. Sci. Canada XII (1990), 1–6..
MR 1043085
[4] BOURBAKI, N.: Éléments De Mathématique Topologie Générale Livre III. Russian translation: Obščaja topologija Osnovnye struktury, Nauka, Moskva, 1968.
[5] CONNOR, J.S.:
The statistical and strong $p$-Cesàro convergence of sequences. Analysis 8 (1988), 47–63.
MR 0954458 |
Zbl 0653.40001
[7] ERDÖS, P.: Solution of advanced problems: $\varphi $-convergence. Amer. Math. Monthly 85 (1978), 122-123.
[11] KOLODZIEJ, W.:
Selected Parts of Mathematical Analysis. PWN, Warszawa, 1970. (Polish)
MR 0514704
[12] KOSTYRKO, P., ŠALÁT, T., WILCZINSKI, W.:
${\cal I}$-convergence. Real. Anal. Exchange 26 (2000–2001), 669-686.
MR 1844385
[13] KOSTYRKO, P., MÁČAJ, M., ŠALÁT, T., SLEZIAK, M.:
${\cal I}$-convergence and extremal ${\cal I}$-limit points. Math. Slovaca 55 (2005), no. 4,, 443-464.
MR 2181783
[14] KOVÁČ, E.:
On $\varphi $-convergence and $\varphi $-density. Math. Slovaca 55 (2005), no. 3, 139-150.
MR 2181010 |
Zbl 1113.40002
[15] KUIPERS, L., NIEDERREITER, H.:
Uniform Distribution of Sequences. John Wiley & Sons, New York, 1974.
MR 0419394
[16] LORENTZ, G.G.:
A contribution to theory of divergent sequences. Acta Math. 80 (1948), 167-190.
MR 0027868
[17] MADDOX, I.J.:
A new type of convergence. Math. Proc. Cambridge Phil. Soc. 83 (1978), 61-64.
MR 0493034 |
Zbl 0392.40001
[18] MADDOX, I.J.:
Steinhaus type theorems for sumability matrices. Proc. Amer. Math Soc. 45 (1974), 209-213.
MR 0364938
[19] MILLER, H.I., ORHAN, C.:
On almost convergent and statistically convergent subsequences. Acta Math. Hung. 43 (2001), 135-151.
MR 1924673
[20] PETERSEN, G.:
Regular Matrix Transformations. Mc-Graw Hill Publ. Comp., London-New York-Toronto-Sydney, 1966.
MR 0225045 |
Zbl 0159.35401
[21] SCHOENBERG, I.J.:
The integrability of certain functions and related sumability methods. Amer. Math. Monthly 66 (1959), 361–375.
MR 0104946
[22] STRAUCH, O., PORUBSKÝ, Š.:
Distribution of Sequences: A Sampler. Schriftenreihe der Slowakischen Akademie der Wissenschaften, Band 1, Peter Lang, Frankfurt am Main, 2005.
MR 2290224
[23] ŠALÁT, T.:
On statistically convergent sequences of real numbers. Math. Slovaca 30 (1980), 139-150.
MR 0587239
[24] THOMSON, B.S. :
Real Functions, . Springer-Verlag , Berlin-Göttingen-Heidelberg-New York-Tokyo, 1985.
MR 0818744 |
Zbl 0581.26001
[25] ZAJÍČEK, L.:
Porosity and $\sigma $-porosity. Real. Anal. Exchange 13 (1987–88), 314-350.
MR 0943561
[26] WIERDL, M.: Almost everywhere convergence and recurrence along subsequences in ergodic theory. Ph.D. Thesis, The Ohio State University.
[27] WINKLER, R.:
Hartman sets, functions and sequences - a survey. Advanced Studies in Pure Mathematics 43 (2006), 1–27.
MR 2405618