Previous |  Up |  Next

Article

References:
[1] BLOK W. J.-PIGOZZI D.: Algebraizable Logics. Mem. Amer. Math. Soc. 396, Amer. Math. Soc, Providence, RI, 1989. MR 0973361 | Zbl 0664.03042
[2] DUDEK W. A.: The number of subalgebras of finite $BCC$-algebras. Bull. Inst. Math. Acad. Sinica 20 (1992), 129-135. MR 1184464 | Zbl 0770.06009
[3] DUDEK W. A.: On proper $BCC$-algebras. Bull. Inst. Math. Acad. Sinica 20 (1992), 137-150. MR 1184465 | Zbl 0770.06010
[4] DUDEK W. A.: On algebras inspired by logics. Math. Stud. Lviv 14 (2000), 3-18. MR 1811831
[5] CHAJDA I.-HALAS R.: Algebraic properties of pre-logics. Math. Slovaca 52 (2002), 157-175. MR 1935115 | Zbl 1007.08003
[6] HALAS R.: $BCC$-algebras inherited from posets. Mult.-Valued Log. 8 (2002), 223-235. MR 1957654 | Zbl 1032.06010
[7] IMAI Y.-ISEKI K.: On axiomatic system of propositional calculi XIV. Proc. Japan Acad. Ser. A Math. Sci. 42 (1966), 19-22. MR 0195704
[8] ISEKI K.: An algebra related with a propositional calculus. Proc. Japan Acad. Ser. A Math. Sci. 42 (1966), 26-29. MR 0202571 | Zbl 0207.29304
[9] KIM J. Y.-YUN J. B.-KIM H. S.: $BCK$-algebras inherited from the posets. Math. Japon. 45 (1997), 119-123. MR 1434966 | Zbl 0864.06011
[10] KOMORI Y.: The class of $BCC$-algebras do not form a variety. Math. Japon. 29 (1984), 391-394. MR 0752236
[11] KOMORI Y.: The variety generated by $BCC$-algebras is finitely based. Rep. Fac. Sci. Shizuoka Univ. 17 (1983), 13-16. MR 0702484 | Zbl 0516.08006
[12] NEGGERS J.-KIM H. S.: Algebras associated with posets. Demonstratio Math. 34 (2001), 13-23. MR 1823078 | Zbl 0985.06001
[13] WRONSKI A.: An algebraic motivation for $BCK$-algebras. Math. Japon. 30 (1985), 183-193. MR 0795873 | Zbl 0569.03029
[14] WRONSKI A.: $BCK$-algebras do not form a variety. Math. Japon. 28 (1983), 211-213. MR 0699585
Partner of
EuDML logo