[1] BLOK W. J.-PIGOZZI D.:
Algebraizable Logics. Mem. Amer. Math. Soc. 396, Amer. Math. Soc, Providence, RI, 1989.
MR 0973361 |
Zbl 0664.03042
[2] DUDEK W. A.:
The number of subalgebras of finite $BCC$-algebras. Bull. Inst. Math. Acad. Sinica 20 (1992), 129-135.
MR 1184464 |
Zbl 0770.06009
[3] DUDEK W. A.:
On proper $BCC$-algebras. Bull. Inst. Math. Acad. Sinica 20 (1992), 137-150.
MR 1184465 |
Zbl 0770.06010
[4] DUDEK W. A.:
On algebras inspired by logics. Math. Stud. Lviv 14 (2000), 3-18.
MR 1811831
[5] CHAJDA I.-HALAS R.:
Algebraic properties of pre-logics. Math. Slovaca 52 (2002), 157-175.
MR 1935115 |
Zbl 1007.08003
[7] IMAI Y.-ISEKI K.:
On axiomatic system of propositional calculi XIV. Proc. Japan Acad. Ser. A Math. Sci. 42 (1966), 19-22.
MR 0195704
[8] ISEKI K.:
An algebra related with a propositional calculus. Proc. Japan Acad. Ser. A Math. Sci. 42 (1966), 26-29.
MR 0202571 |
Zbl 0207.29304
[9] KIM J. Y.-YUN J. B.-KIM H. S.:
$BCK$-algebras inherited from the posets. Math. Japon. 45 (1997), 119-123.
MR 1434966 |
Zbl 0864.06011
[10] KOMORI Y.:
The class of $BCC$-algebras do not form a variety. Math. Japon. 29 (1984), 391-394.
MR 0752236
[11] KOMORI Y.:
The variety generated by $BCC$-algebras is finitely based. Rep. Fac. Sci. Shizuoka Univ. 17 (1983), 13-16.
MR 0702484 |
Zbl 0516.08006
[12] NEGGERS J.-KIM H. S.:
Algebras associated with posets. Demonstratio Math. 34 (2001), 13-23.
MR 1823078 |
Zbl 0985.06001
[13] WRONSKI A.:
An algebraic motivation for $BCK$-algebras. Math. Japon. 30 (1985), 183-193.
MR 0795873 |
Zbl 0569.03029
[14] WRONSKI A.:
$BCK$-algebras do not form a variety. Math. Japon. 28 (1983), 211-213.
MR 0699585