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QBCC-ALGEBRAS I N H E R I T E D F R O M QOSETS 

RADOMÍR HALAS — JIŘÍ ORT 

(Communicated by Anatolij Dvurečenskij ) 

A B S T R A C T . A new class of algebras derived from BCC-algebras, the so-called 
quasi-BCC-algebras (briefly QBCC-algebras), are introduced and studied. These 
algebras model properties of the logical connective implication " ==>• ", for which 
the validity of formulas x ==> y and y ==> x does not mean the equivalence 
of x and y. A natura l construction of QBCC-algebras from quasiordered sets 
(qosets) is then given and properties of such QBCC-algebras are studied. 

1. Preliminaries 

The notion of a BCK-algebra was introduced in 60's by Y. I m a i and 
K. I s e k i [7] as an algebraic formulation of Meredith's BCK-implicational cal­
culus. When solving the problem whether the class of all BCK-algebras form 
a variety, Y. K o m o r i [10] introduced the class of BCC-algebras and proved 
that this class is not a variety. A. W r o r i s k i [13] characterized BCC-algebras 
as algebras isomorphic with a subalgebra of the left-residuation reduct of some 
integral monoid with left-residuation. 

There are several axiomatizations of BCC-algebras. We use that of [2], multi­
plication in which models some properties of the logical connective implication 
and the constant 1 means the logical value "true". For more details we refer 
also to [3] and [11]. 

DEFINITION 1. An algebra (A,«, 1) of type (2,0) is a BCC-algebra if it sat­
isfies the following identities: 

(BCC1) (x.y).[(z.x).(z.y)} = 1 , 
(BCC2) x.x = 1, 
(BCC3) * • ! - - - - 1 , 
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(BCC4) lmx = x, 
(BCC5) (xmy = l b y x = l) => x = y. 

It was shown by W . A. D u d e k [2] that BCC-algebras satisfying the axiom 

(C) xm(yz) = y(x*z) 

are just BCK-algebras. 
BCK-algebras satisfying the left-distributivity axiom 

(D) x • (y • z) = (x • y) • (x • z) 

are known as Hilbert algebras, an algebraic counterpart of the logical connective 
implication in intuitionistic logic. Hilbert algebras were recently generalized in [5] 
as follows: 

DEFINITION 2. A pre-logic is an algebra A = (A, •, 1) of type (2,0) satisfying 
the axioms: 

(PL1) £ • £ = 1, 
(PL2) lmx = x, 
(PL3) x • (y • z) = (x • y) • (x • z), 
(PL4) x • (y z) = y • (x • z). 

In other words, pre-logics, contrary to Hilbert algebras, need not satisfy the 
axiom (BCC5). 

The axioms of a BCC-algebra (A, •, 1) allow us to define a natural ordering 
on A as follows: 

£ < V ^^ x*y = l. (1) 

Indeed, reflexivity is a conclusion of (BCC2), antisymetry of (BCC5) and tran­
sitivity can be derived from (BCC1). Henceforth, from this point of view 
BCC-algebras are special cases of ordered sets. When extracting the axiom 
(BCC5) from the axiomatic system of BCC-algebras we see that < defined 
in (1) is a quasiorder relation similarly as in the case of pre-logics. This leads us 
to a common generalization of both the classes of BCC-algebras and pre-logics: 

DEFINITION 3. A quasi-BCC-algebra (briefly QBCC-algebra) is any algebra 
A = (-4, •, 1) satisfying the axioms (BCC1)-(BCC4). A quasiorder relation de­
fined on A by (1) is called a natural quasiordering on A. 

R e m a r k . If (-4, <) is any quasiordered set, a, b G A, we adopt the following 
terminology: 

We write a ~ b whenever a < b and b < a hold and call the pair (a, b) 
indistinguishable] the set C(a) = {x G A : x ~ a} is called the cell of a. We 
write a < b if a < b and a </> b. If A is finite, then (.A, <) can be viewed as a 
poset in which elements can be substituted by cells. 
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For example, the diagram given in Fig. 1 

k> 
ak 

FIGURE 1. 

represents a qoset in which, excluding reflexivity, the relations a < b, a < c, 
b< c, b<d, d<b hold. 

One can easily derive that the natural quasiordering < on any QBCC-algebra 
A = (A, •, 1) has the following properties: 

1 < x <=> x = 1, 

y < x •y for each x ,y G A. 

(2) 

(3) 

Indeed, 1 < x yields by (BCC4) 1 = 1 mx = x. Substituting x = 1 into (BCCl) 
we get the property (3). The property (2) exactly means that (7(1) = {1}. 

EXAMPLE 1. Let us consider an algebra A = (A, •, 1) given by the table: 

• 1 a b c d 

1 1 a b c d 
a 1 1 b c d 
b 1 1 1 1 d 
c 1 1 1 1 d 
d 1 1 a a 1 

One can show that A is a QBCC-algebra, but l = b«c = c*6 for c^b and 

l = a^a = a^(d^b)yt:(a^d)^(a^b) = d^b = a, 

verifying that A is neither a BCC-algebra nor a pre-logic. 

In [5] it was shown that there are pre-logics A = (A, •, 1) having the property 
that every subset containing the element 1 is a subalgebra of A. In other words, 
a subalgebra lattice Sub .4 = 2^\{1}l. 
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E X A M P L E 2. Let (Q, <, 1) be a qoset with a greatest element 1, C(l) = {1}. 

Let us define for x, y G Q 

\ У o 

_ if x < y , 

otherwise. 

One can verify that Q = (Q, •, 1) is a QBCC-algebra (even a pre-logic). 

The aim of the paper is to describe all the QBCC-algebras in which every 
subset containing 1 is a subalgebra. In the following paragraph we will present 
a new construction of QBCC-algebras derived from qosets. 

2. Standard QBCC-algebras 

To simplify expressions, a QBCC-algebra A = (A, •, 1) in which every subset 
containing 1 is a subalgebra will be called standard. 

It is clear that for A to be standard it is enough every subset having three 
elements {x, y, 1} to be a subalgebra of A, hence x*y G {1, x, y}. By the natural 
quasiorder < , the case x • y = 1 holds if and only if x < y. The second case 
x • y = x is possible by the property (3) only when y < x. In other words, we 
have necessarily x%y = y whenever x \\y (i.e. x j£ y and y j£ x). 

A pair (x,y) of (distinct) elements x,y G A, x > y, is called normal if 
x%y = y . 

Summarizing all the cases above, it is enough to describe which pairs of 
elements (x,y) can be non-normal. At first we will describe a local behavior of 
such couples. 

THEOREM 1. Let A = (A,9,l) be a standard QBCC-algebra, let (x,y) be a 
non-normal pair of elements, i.e. x*y = x, x > y. Then the following conditions 
hold: 

(a) for each z > y we have either z ~ x and z • y = z 
or z > x and the pairs (z, x), (z, y) are both normal; 

(b) for each z < x we have either z ~ y and x • z = x 
or z < y and the pairs (x,z), (y,z) are both normal. 

P r o o f . 

(a) Suppose that for z > y, x ~ z or x < z does not hold. Then one of the 
following cases occurs: 

a) y < z < x, 
P) z\\x. 
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We will show that both the cases a) and ft) lead to a contradiction. 
The case a): 

We have y x = z%x = y z = l, hence 

1 = (x • y) • [(z • x) • (z • y)] = x • [l • (z • y)] = x • (z • y). 

Now we have either z my = y and hence a; • 2/ = 1, a contradiction with x > y, 
or z%y = z and a; • z = 1, contradicting x > z. 
The case /?) : 
In this case it holds that y x = y z = 1, x • z = z, z • x = x and, again by 
(BCC1), 

1 = (y • z) • [(x •y) • (x • z)] = 1 • (x • z) = x • z, 
which is a contradiction with x || 2. 

We have shown that either x < z or x ~ z whenever y < z. 
Suppose further that z ~ a;, i.e. z*x = a;*z = l . Then (BCCl) yields 

1 = (x • y) • [(z • x) • (z • y)] =x%(z9y). 

Since z > y, we have £ • y G {z, y}. The case £ • 2/ = y leads to 

l = x« (^*2 / )=x*2 / , 

which is a contradiction with x > y. Henceforth z • y = z holds and the pair 
(z, y) is not normal. 

Consider the case x < z and let us prove that then the pairs (z,x), (z,y) 
are normal. Assume on the contrary, that z •y = z. Then 

1 = (y • x) • [(z • y) • (z • #)] = 1 • [z • (z • x)] = z • (z • x) . 

Further, if z • a; = x, then l = Z9(z^x) = z9x contradicting z > x. The case 
z • x = z gives us 

1 = (z • 2/) • [(x • 0) • (x • y)] = z • (1 • x) = z, 

hence also l = z = z*x = l * x = x , a contradiction with z > x. Henceforth 
we have necessarily z • y = y and the pair (z, 2/) is normal. 

Let us show the normality of (z, x). It holds that 

1 = (x^y)^[(z^x)^(z^y)] =xm [(z • x) • y] , 

and z • x E {x, z). Supposing z • x = z we obtain 

1 = x • [(z • x) • y] =xm(z9y) = x9y, 

which does not hold. This proves z • x = x, the normality of (z,x). 
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(b) Consider the dual case z < x and assume that z\\y (the case y < z < x 
cannot occur by (a)). Then y x = z*x = l, z%y = y, y z - z^ a n ( j 

1 = (x • y) • [(z • x) • (z • y)\ = x • (1 • y) = x • y, 

contradicting x > y. Hence we have necessarily z <y. 
Supposing z ~ y, we get y • z = 1 and 

1 = (y • *) • [(x • 2/) • fa • z)] =l^[x^(x^ z)] = X • (x • z) . 

Then 
1 = X9(X9Z)=X%Z, 

which does not hold. Hence, the pair (x, z) is not normal and x • z = x. 
Consider the second possible case, i.e. z < y < x and let us prove the 

normality of (x,z) and (y,z). The pair (x,z) has to be normal because of (a) 
(non-normal pair is a covering pair). 

If the pair (y,z) is not normal, then by (a) again, the pair (x,y) is normal, 
a contradiction. Hence the pair (y, z) is normal. • 

Theorem 1 motivates us to introduce the following concept: 

DEFINITION 4. Let (Q, <, 1) be a qoset with a greatest element 1, and 
C( l ) = {1}. A pair (x,y) £ Q x Q, x > y, is called a bridge if for each 
z e Q the following (dual) conditions hold: 

(bl) z > y implies z > x, 
(b2) z < x implies z <y. 

R e m a r k . It is clear that if (x, y) is a bridge in Q, then x covers y, i.e. there is 
no z e Q with y < z < x. The notion of "bridge" is motivated by the diagram 
of Q around the pair (x ,y) , which looks like a bridge between x and y. In 
account of Theorem 1 we have seen that bridges are the only candidates for pairs 
of elements which need not be normal. Next we will describe all the standard 
QBCC-algebras. 

THEOREM 2. Let (Q,<,1) be a qoset with a greatest element 1 and C(l) = {!}. 
Let us define the operation • on Q as follows: 

(ql) x%y = 1 if x <y, 
(q2) 1 • x = x, 
(q3) x%y = y if x \\ y, 
(q4) x • y = y if x > y and (x, y) is not a bridge, 
(q5) if (x,y) is a bridge in Q and x ^ 1, one can set x*y = y or x*y = x; 

in the latter case for each z > x we have either z ~ x and z • y = z or 
z > x and z • x = x, z • y = y; for each z < y we have either z ~ y 
and x • z = x or z < y and X9z = y9z = z. 
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Then (Q, •, 1) is a standard QBCC-algebra and each standard QBCC-algebra is 
of this form. 

P r o o f . It is sufficient to show the validity of the axiom 

(x • y) • [(z • x) • (z • y)] = 1. (*) 

One can easily show that (*) holds whenever there are identical elements among 
x, y, z, so we can suppose that they are pairwise distinct. The same holds if 
one of the elements x, y, z is equal to 1. Comparing the elements y, z we 
distinguish several cases. 
Case 1. 
Suppose z < y. Then by (ql), z • y = 1 and (*) is valid. 
Case 2. 
Suppose further z \\y. Then due to (q3), z%y = y and the left hand side of (*) 
has the form 

(x • y) • [(z • x) • (z • y)] = (x • y) • [(z • x) • y] . 

With respect to elements x, z the following cases can occur: 
Subcase 2.1. Let z || x. Then by (q3) again 2 • x = x and applying (ql) we 

get (x • y) • [(z • x) • y] = (x • y) • (x • y) = 1. 
Subcase 2.2. Let us have 2 < x, i.e. 2 • x = 1 and (x • y) • [(2? • x) • y] = 

(x 9y) 9y. We have x ^ y, otherwise we would have 2: < x < y, a contradiction 
with 2 || y. The case x*y = y gives us (x*y)*y = y*y = l . I f x * y = x, then 
x > y and the pair (x, y) is a bridge. But it is impossible because of z < x and 
z II y-

Subcase 2.3. Suppose finally that z > x. Then z • x G {x, 2:}. If z • x = 2, 
then (2,x) is a bridge and since 2 || y, necessarily also x || y, and due to (q3) 
x%y — y. From this we can derive (x• y) • [(z• x) • y] = y • (2• y) = y • y = 1. 

The case 2 • x = x leads to (x • y) • [(2 • x) • y] = (x • y) • (x • y) = 1. 
Case 3. 
Suppose that z > y. The following two subcases can occur: 

Subcase 3.1. Let the pair (z,y) be normal, i.e. z • y = y, and 

(x • y) • [(2? • x) • (z • y)] = (x • y) • [(2 • x) • y] . 

Further if 2 • x = 1, i.e. 2 < x, then x • y G {x,y} (otherwise we would have 
z < y)- The case x%y = y gives (x • y) • [(2 • x) • y] = y • (1 • y) = y • y = 1. 
For x • y = x we have x > y and the pair (x,y) is a bridge with z > y. This 
leads to z > x and 2 7̂  x, otherwise we would have, by (q5), z 9y = z, which 
does not hold. Hence 2 > x, a contradiction. 

Suppose further that 2*x = x. Then (x*y)« [(2*x)*y] = (x«y)*(x«y) = 1. 
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Let us consider the last case z • x = z. We have z > x , and the pair (z,x) 
is a bridge. Then (x • y) • [(z • x) • y] = (x • y) • (z • y) = (x • y) • y. Since 
y < z and (z, x) is a bridge, we have also y < x due to (b2). The case y ~ x is 
impossible, since by (q5) the pair (z,y) would not be normal. Hence y < x and 
by (q5) again, the pair (x,y) is normal, i.e. x • y = y and ( x * y ) * y = y « y = l , 
finishing the Subcase 3.1. 

Subcase 3.2. Let us consider that the pair (z, y) is not normal, hence z%y = z, 
and 

(x • y) • [(z • x) • (z • y)] = (x • y) • [(2 • x) • z] . 

Suppose further z • x = 1, i.e. z < x. If 2 ~ x, then by (q5) the pair (x, y) is 
also not normal, hence x*y = x and (x*y)* [(z*x)*z] = x * ( l * z ) = x * z = 1. 
For z < x we have again x • y = y by (q4), and so (x • y) • [(z • x) • z] = 

y.(l*z) = y z = l. 

Consider the case when z • x = x, hence (x • y) • [(z • x) • 2] = (x • y) • (x • z). 
Suppose further x || z, i.e. x • z = z and so (x • y) • (x • z) = (x • y) • z. Since 
(y,z) forms abridge and z || x , also x || y holds and x*y = y yields (x9y)9z = 
y z = l. The case z > x leads to x • z = 1 and (x • y) • (x • z) = (x • y) • 1 = 1. 

The last possible case with respect to x and z is z • x = z. But then 
(x • y) • [(z • x) • (z • y)] = (x • y) • (2 • 2) = (x • y) • 1 = 1, finishing the proof 
of Subcase 3.2. • 

Theorem 2 allows us to construct a standard QBCC-algebra from a given 
qoset Q. It shows that one can have non-normal pairs of elements only when Q 
contains bridges. Hence, for a qoset without bridges the only possibility to get 
standard QBCC-algebras is as shown in Example 2. 

E X A M P L E 3. Let us consider a qoset Q with the diagram in Fig. 2. 

i» 

o< 

F I G U R E 2. 
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By setting a « 0 = a we get b*0 = b, c*0 = 0, c*a = a, c*b = b by (q5). The 
rest of cases is given by (ql) , (q2) and (q4), hence the operation • is completely 
determined. 

It is immediately seen that the algebras described in Theorem 2 need not 
satisfy the distributivity axiom (D), hence these need not be pre-logics in general. 
Indeed, if (x, y) is any non-normal pair, i.e. x*y = x, then 1 = x*x = x^(x^y) ^ 
(x • x) • (x • y) = x. 

COROLLARY 1. Every standard QBCC-algebra satisfies the axiom (C). 

P r o o f . We show that every standard QBCC-algebra (Q, •, 1) satisfies the 
axiom (C): 

x • (y • z) = y • (x • z). 

If there are identical elements among x, y and z, (C) holds (we use the identity 
a9 $• a) = 1). The same holds if one of the elements x , y, z is equal to 1. So 
we can suppose that x , y, z are distinct elements of Q. 

Comparing y and z we obtain three possibilities: 

Case 1. 
Let y < z, i.e. y • z = 1. We get x • (y • z) = 1. Considering x • z = 1 or 
x • z = z one gets y • (x • z) = 1 and the equality holds. If x • z = x , i.e. the 
pair (x,z) forms a bridge and x > z, we obtain, using transitivity, y < x. So 
y^(x^z) = y^x = l. 
Case 2. 

Suppose y \\ z, i.e. y • z = z. For x • z = 1 both the sides of (C) are equal to 1. 
If x • z = z, we obtain x • (y • z) = y • (x • z) = z.- In the last subcase x • z = x 
we get x • (y • z) = x. Since (x, z) is a bridge and y || z, also y || x . It follows 
that y^(x^z) = y^x = x and (C) holds. 
Case 3. 
Suppose finally that y > z. Let further yz = z.lix9z = l, then both the sides 
of (C) are equal to 1. In the subcase x • z = z we get x • (y • z) = y • (x • z) = z. 
The last possible subcase is x • z = x , i.e. (x,z) is not normal and forms a 
bridge. So we have either y ~ x and then by (q5) the pair (z, y) is also non-
normal, a contradiction with y • z = z, ov y > x. For y > x we get, by (q5), 
y • x = x and x • (y • ^) = y • (x • z) = x. 

Now let y • z = y holds, i.e. (y, z) is non-normal and forms a bridge. In the 
subcase x • z = 1, we have by transitivity x < y and both the sides are equal 
to 1. For X9z = z only the possibility x*y = y can occur ( x * y = 1 or x*y = x 
lead to a contradiction) and so we get x • (y • z) — y • (x • z) = y. Finally let 
x • z = x . Since (y, z), (z, x) are bridges, we have necessarily x ~ y. From this 
we derive x • (y • z) = y • (x • z) = 1. • 
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