[1] ANDERSON M.-FEIL T.:
Lattice-Ordered Groups (An Introduction). D. Reidel, Dordrecht, 1988.
MR 0937703 |
Zbl 0636.06008
[2] DI NOLA A.-GEORGESCU G.-IORGULESCU A.:
Pseudo $BL$-algebras: Part I. Mult.-Valued Log. 8 (2002), 673-714.
MR 1948853
[3] DI NOLA A.-GEORGESCU G.-IORGULESCU A.:
Pseudo $BL$-algebras: Part II. Mult.-Valued Log. 8 (2002), 717-750.
MR 1948854
[4] DVUREČENSKIJ A.:
On pseudo $MV$-algebras. Soft Comput. 5 (2001), 347-354.
Zbl 1081.06010
[8] HÁJEK P.: Basic fuzzy logic and $BL$-algebras. Soft Comput. 2 (1998), 124-128.
[9] HANSEN M. E.:
Minimal prime ideals in autometrized algebras. Czechoslovak Math. J. 44(119) (1994), 81-90.
MR 1257938 |
Zbl 0814.06011
[10] KOVÁŘ T.: A General Theory of Dually Residuated Lattice Ordered Monoids. Thesis, Palacký Univ., Olomouc, 1996.
[11] KOVÁŘ T.:
Two remarks on dually residuated lattice ordered semigroups. Math. Slovaca 49 (1999), 17-18.
MR 1804468 |
Zbl 0943.06007
[12] KÜHR J.:
Ideals of noncommutative $DR\ell$-monoids. (Submitted).
Zbl 1081.06017
[13] KÜHR J.:
Pseudo $BL$-algebras and $DR\ell$-monoids. Math. Bohem. (To appear).
MR 1995573
[15] RACHŮNEK J.:
Prime ideals in autometrized algebras. Czechoslovak Math. J. 37 (112) (1987), 65-69.
MR 0875128 |
Zbl 0692.06007
[16] RACHŮNEK J.:
Polars in autometrized algebras. Czechoslovak Math. J. 39(114) (1989), 681-685.
MR 1018003 |
Zbl 0705.06010
[17] RACHŮNEK J.:
Polars and annihilators in representable $DR\ell$-monoids and $MV$-algebras. Math. Slovaca 51 (2001), 1-12.
MR 1817718
[18] RACHŮNEK J.:
A non-commutative generalization of $MV$-algebras. Czechoslovak Math. J. 52(127) (2002), 255-273.
MR 1905434 |
Zbl 1012.06012
[19] SNODGRASS J. T.-TSINAKIS C.:
The finite basis theorem for relatively normal lattices. Algebra Universalis 33 (1995), 40-67.
MR 1303631 |
Zbl 0819.06009
[20] SWAMY K. L. N.:
Dually residuated lattice ordered semigroups I. Math. Ann. 159 (1965), 105-114.
MR 0183797
[21] SWAMY K. L. N.:
Dually residuated lattice ordered semigroups III. Math. Ann. 167 (1966), 71-74.
MR 0200364 |
Zbl 0158.02601