Previous |  Up |  Next

Article

References:
[1] ANDERSON M.-FEIL T.: Lattice-Ordered Groups (An Introduction). D. Reidel, Dordrecht, 1988. MR 0937703 | Zbl 0636.06008
[2] DI NOLA A.-GEORGESCU G.-IORGULESCU A.: Pseudo $BL$-algebras: Part I. Mult.-Valued Log. 8 (2002), 673-714. MR 1948853
[3] DI NOLA A.-GEORGESCU G.-IORGULESCU A.: Pseudo $BL$-algebras: Part II. Mult.-Valued Log. 8 (2002), 717-750. MR 1948854
[4] DVUREČENSKIJ A.: On pseudo $MV$-algebras. Soft Comput. 5 (2001), 347-354. Zbl 1081.06010
[5] DVUREČENSKIJ A.: States on pseudo $MV$-algebras. Studia Logica 68 (2001), 301-327. MR 1865858 | Zbl 1081.06010
[6] GEORGESCU G.-IORGULESCU A.: Pseudo $MV$-algebras. Mult.-Valued Log. 6 (2001), 95-135. MR 1817439 | Zbl 1014.06008
[7] GRÄTZER G.: General Lattice Theory. Birkhäuser, Basel-Boston-Berlin, 1998. MR 1670580 | Zbl 0909.06002
[8] HÁJEK P.: Basic fuzzy logic and $BL$-algebras. Soft Comput. 2 (1998), 124-128.
[9] HANSEN M. E.: Minimal prime ideals in autometrized algebras. Czechoslovak Math. J. 44(119) (1994), 81-90. MR 1257938 | Zbl 0814.06011
[10] KOVÁŘ T.: A General Theory of Dually Residuated Lattice Ordered Monoids. Thesis, Palacký Univ., Olomouc, 1996.
[11] KOVÁŘ T.: Two remarks on dually residuated lattice ordered semigroups. Math. Slovaca 49 (1999), 17-18. MR 1804468 | Zbl 0943.06007
[12] KÜHR J.: Ideals of noncommutative $DR\ell$-monoids. (Submitted). Zbl 1081.06017
[13] KÜHR J.: Pseudo $BL$-algebras and $DR\ell$-monoids. Math. Bohem. (To appear). MR 1995573
[14] MARTINEZ J.: Archimedean lattices. Algebra Universalis 3 (1973), 247-260. MR 0349503 | Zbl 0317.06004
[15] RACHŮNEK J.: Prime ideals in autometrized algebras. Czechoslovak Math. J. 37 (112) (1987), 65-69. MR 0875128 | Zbl 0692.06007
[16] RACHŮNEK J.: Polars in autometrized algebras. Czechoslovak Math. J. 39(114) (1989), 681-685. MR 1018003 | Zbl 0705.06010
[17] RACHŮNEK J.: Polars and annihilators in representable $DR\ell$-monoids and $MV$-algebras. Math. Slovaca 51 (2001), 1-12. MR 1817718
[18] RACHŮNEK J.: A non-commutative generalization of $MV$-algebras. Czechoslovak Math. J. 52(127) (2002), 255-273. MR 1905434 | Zbl 1012.06012
[19] SNODGRASS J. T.-TSINAKIS C.: The finite basis theorem for relatively normal lattices. Algebra Universalis 33 (1995), 40-67. MR 1303631 | Zbl 0819.06009
[20] SWAMY K. L. N.: Dually residuated lattice ordered semigroups I. Math. Ann. 159 (1965), 105-114. MR 0183797
[21] SWAMY K. L. N.: Dually residuated lattice ordered semigroups III. Math. Ann. 167 (1966), 71-74. MR 0200364 | Zbl 0158.02601
Partner of
EuDML logo