Previous |  Up |  Next

Article

References:
[1] BAINOV D.-MISHEV D.: Oscillation Theory for Neutral Differential Equations with Delay. Adam Hilger, Briston-Philadelphia-New York, 1991. MR 1147908 | Zbl 0747.34037
[2] BAINOV D.-PETROV V.: Asymptotic properties of the nonosdilatory solutions of second-order neutral equations with a deviating argument. J. Math. Anal. Appl. 194 (1995), 343-351. MR 1345041
[3] EDWARDS R. E.: Functional Analysis. Mir, Moscow, 1969 (Russian translation). Zbl 0189.12103
[4] GYORI I.-LADAS G.: Oscillation Theory of Delay Differential Equations. Clarendon Press, Oxford, 1991. MR 1168471
[5] LADDE G. S.-LAKSHMIKANTHAM V.-ZHANG B. G.: Oscillation Theory of Differential Equations with Deviating Arguments. Marcel Dekker, New York-Basel, 1987. MR 1017244 | Zbl 0832.34071
[6] MYSKIS A. D.: Linear Differential Equations with a Retarded Argument. Nauka, Moscow, 1972. (Russian) MR 0352648
[7] OHRISKA J.: Second order self-adjoint differential equation and oscillation. In: Proceedings Inter. Scient. Conf. Math., Zilina, 1998, pp. 209-216.
[8] OHRISKA J.: Oscillation of second order delay and ordinary differential equation. Czechoslovak Math. J. 34 (1984), 107-112. MR 0731983 | Zbl 0543.34054
[9] OLACH R.: Observation of a feedback mechanism in a population model. Nonlinear Anal. 41 (2000), 539-544. MR 1762162 | Zbl 0952.34054
[10] PHILOS, CH. G.: Oscillations of first order linear retarded differential equations. J. Math. Anal. Appl. 157 (1991), 17-33. MR 1109441 | Zbl 0731.34080
[11] WERBOWSKI J.: Oscillations of first-order differential inequalities with deviating arguments. Ann. Math. Pura Appl. 140 (1985), 383-392. MR 0807646 | Zbl 0586.34058
Partner of
EuDML logo