Previous |  Up |  Next

Article

References:
[Bo] BONDARENKO B. A.: Generalized Pascal Triangles and Pyramids, Their Fractals. Graphs and Applications (Russian), Fan, Tashkent, 1990. MR 1069753 | Zbl 0706.05002
[K1] KOREC I.: Generalized Pascal triangles. Decidability results. Acta Math. Univ. Comenian. 46-47 (1985), 93-130. MR 0872334 | Zbl 0607.05002
[K2] KOREC I.: Generalized Pascal triangles. In: Proceedings of the V. Universal Algebra Symposium, Turawa, Poland, May 1988 (K. Halkowska and S. Stawski, eds.), World Scientific, Singapore, 1989, pp. 198-218. MR 1084405
[K3] KOREC I.: Definability of arithmetic operations in Pascal triangle modulo an integer divisible by two primes. Grazer Math. Ber. 318 (1993), 53-61. MR 1227401 | Zbl 0797.11024
[Le] LE M.: On the number of solutions of the generalized Ramanjuan-Nagell equation $x^2 - D = 2^{n+2}$. Acta Arith. 60 (1991), 149-167. MR 1139052
[Mo] MONK J. D.: Mathematical Logic. Springer Verlag, New York, 1976. MR 0465767 | Zbl 0354.02002
[Ri] RICHARD D.: Answer to a problem raised by J. Robinson: the arithmetic of positive or negative integers is definable from successor and divisibility. J. Symbolic Logic 50 (1985), 927-935. MR 0820123 | Zbl 0612.03009
[Ro] ROBINSON J.: Definability and decision problems in arithmetic. J. Symbolic Logic 14 (1949), 98-114. MR 0031446 | Zbl 0034.00801
[Se] SEMENOV A. L.: On definability of arithmetic in their fragments. (Russian), Dokl. Akad. Nauk SSSR 263 (1982), 44-47. MR 0647548
[Sh] SHOENFIELD J. R.: Mathematical Logic. Addison -Wesley, Reading, 1967. MR 0225631 | Zbl 0155.01102
[Si] SINGMASTER D.: Notes on binomial coefficients III - Any integer divides almost all binomial coefficients. J. London Math. Soc. (2) 8 (1974), 555-560. MR 0396285 | Zbl 0293.05007
[Wo] WOODS A.: Some Problems in Logic and Number Theory, and Their Connection. Ph.D. Thesis, University of Manchester, Manchester, 1981.
[Ye] YERSHOW, JU. L.: Decidability Problems and Constructive Models. (Russian), Nauka, Moscow, 1980.
Partner of
EuDML logo