[1] BAKER A.:
A sharpening of the bounds for linear forms in logarithms II. Acta Arith. 24 (1973), 33-36.
MR 0376549 |
Zbl 0261.10025
[2] COHN J. H. E.:
On souare Fibonacci numbers. J. London Math. Soc. 39 (1964), 537-540.
MR 0163867
[3] COHN J. H. E.:
Squares in some recurrent sequences. Pacific J. Math. 41 (1972), 631-646.
MR 0316367 |
Zbl 0248.10016
[5] COHN J. H. E.:
Five Diophatine equations. Math. Scand. 21 (1967), 61-70.
MR 0236103
[6] KISS P.:
Differences of the terms of linear recurrences. Studia Sci. Math. Hungar. 20 (1985), 285-293.
MR 0886031 |
Zbl 0628.10008
[7] LJUNGGREN W.:
Zur Theorie der Gleichung $x^2 + 1 = Dy$4. Avh. Norske Vid Akad. Oslo. 5 (1942).
MR 0016375
[8] LONDON J.-FINKELSTEIN R.:
On Fibonacci and Lucas numbers which are perfect powers. Fibonacci Quart. 7 (1969), 476-481, 487 (Errata ibid 8 (1970), 248).
MR 0255482 |
Zbl 0206.05402
[9] LONDON J.-FINKELSTEIN R.: On Mordell's Equation $y^2 - k = x^3$. Bowling Green University Press, 1973.
[10] McDANIEL W. L.-RIBENBOIM P.:
Squares and double-squares in Lucas sequences. C.R. Math. Rep. Acad. Sci. Canada. 14 (1992), 104-108.
MR 1167065 |
Zbl 0771.11012
[11] PETHO A.:
Full cubes in the Fibonacci sequence. Publ. Math. Debrecen. 30 (1983), 117-127.
MR 0733078
[12] PETHO A.:
The Pell sequence contains only trivial perfect powers. In: Sets, Graphs and Numbers. Colloq. Math. Soc. Janos Bolyai 60, North-Holland, Amsterdam-New York, 1991, pp. 561-568.
MR 1218218
[13] PETHO A.:
Perfect powers in second order linear recurrences. J. Number Theory, 15 (1982), 5-13.
MR 0666345
[14] PETHO A.:
Perfect powers in second order recurrences. In: Topics in Classical Number Theory, Akademiai Kiado, Budapest, 1981, pp. 1217-1227.
MR 0781182
[15] RIBENBOIM P.:
Square classes of Fibonacci and Lucas numbers. Portugal. Math. 46 (1989), 159-175.
MR 1020964 |
Zbl 0687.10005
[16] RIBENBOIM P., McDANIEL W. L.:
Square classes of Fibonacci and Lucas sequences. Portugal. Math. 48 (1991), 469-473.
MR 1147611
[17] RIBENBOIM P.:
Square classes of $(a^n - l)/(a - 1)$ and $a^n +1$. Sichuan Daxue Xunebar, 26 (1989), 196-199.
MR 1059704
[18] ROBBINS N.:
On Fibonacci numbers of the form $PX^2$, where P is prime. Fibonacci Quart. 21 (1983), 266-271.
MR 0723787
[19] ROBBINS N.:
On Pell numbers of the form $PX^2$, where P is prime. Fibonacci Quart. 22 (1984), 340-348.
MR 0766310
[20] SHOREY T. N., STEWART C. L.:
On the Diophantine equation $ax^{2t}+ bx^ty + cy^2 = d$ and pure powers in recurrence sequences. Math. Scand. 52 (1983), 24-36.
MR 0697495
[21] SHOREY T. N., STEWART C. L.:
Pure powers in recurrence sequences and some related Diophatine equations. J. Number Theory 27 (1987), 324-352.
MR 0915504
[22] WYLIE O.: In the Fibonacci series $F_1 = 1$, $F_2 = 1$, $F_{n+1} = F_n + F_{n-1}$ the first, second and twelfth terms are squares. Amer. Math. Monthly 71 (1964), 220-222.