Previous |  Up |  Next

Article

References:
[1] BAKER A.: A sharpening of the bounds for linear forms in logarithms II. Acta Arith. 24 (1973), 33-36. MR 0376549 | Zbl 0261.10025
[2] COHN J. H. E.: On souare Fibonacci numbers. J. London Math. Soc. 39 (1964), 537-540. MR 0163867
[3] COHN J. H. E.: Squares in some recurrent sequences. Pacific J. Math. 41 (1972), 631-646. MR 0316367 | Zbl 0248.10016
[4] COHN J. H. E.: Eight Diophantine equations. Proc. London Math. Soc. 16 (1966), 153-166. MR 0190078 | Zbl 0136.02806
[5] COHN J. H. E.: Five Diophatine equations. Math. Scand. 21 (1967), 61-70. MR 0236103
[6] KISS P.: Differences of the terms of linear recurrences. Studia Sci. Math. Hungar. 20 (1985), 285-293. MR 0886031 | Zbl 0628.10008
[7] LJUNGGREN W.: Zur Theorie der Gleichung $x^2 + 1 = Dy$4. Avh. Norske Vid Akad. Oslo. 5 (1942). MR 0016375
[8] LONDON J.-FINKELSTEIN R.: On Fibonacci and Lucas numbers which are perfect powers. Fibonacci Quart. 7 (1969), 476-481, 487 (Errata ibid 8 (1970), 248). MR 0255482 | Zbl 0206.05402
[9] LONDON J.-FINKELSTEIN R.: On Mordell's Equation $y^2 - k = x^3$. Bowling Green University Press, 1973.
[10] McDANIEL W. L.-RIBENBOIM P.: Squares and double-squares in Lucas sequences. C.R. Math. Rep. Acad. Sci. Canada. 14 (1992), 104-108. MR 1167065 | Zbl 0771.11012
[11] PETHO A.: Full cubes in the Fibonacci sequence. Publ. Math. Debrecen. 30 (1983), 117-127. MR 0733078
[12] PETHO A.: The Pell sequence contains only trivial perfect powers. In: Sets, Graphs and Numbers. Colloq. Math. Soc. Janos Bolyai 60, North-Holland, Amsterdam-New York, 1991, pp. 561-568. MR 1218218
[13] PETHO A.: Perfect powers in second order linear recurrences. J. Number Theory, 15 (1982), 5-13. MR 0666345
[14] PETHO A.: Perfect powers in second order recurrences. In: Topics in Classical Number Theory, Akademiai Kiado, Budapest, 1981, pp. 1217-1227. MR 0781182
[15] RIBENBOIM P.: Square classes of Fibonacci and Lucas numbers. Portugal. Math. 46 (1989), 159-175. MR 1020964 | Zbl 0687.10005
[16] RIBENBOIM P., McDANIEL W. L.: Square classes of Fibonacci and Lucas sequences. Portugal. Math. 48 (1991), 469-473. MR 1147611
[17] RIBENBOIM P.: Square classes of $(a^n - l)/(a - 1)$ and $a^n +1$. Sichuan Daxue Xunebar, 26 (1989), 196-199. MR 1059704
[18] ROBBINS N.: On Fibonacci numbers of the form $PX^2$, where P is prime. Fibonacci Quart. 21 (1983), 266-271. MR 0723787
[19] ROBBINS N.: On Pell numbers of the form $PX^2$, where P is prime. Fibonacci Quart. 22 (1984), 340-348. MR 0766310
[20] SHOREY T. N., STEWART C. L.: On the Diophantine equation $ax^{2t}+ bx^ty + cy^2 = d$ and pure powers in recurrence sequences. Math. Scand. 52 (1983), 24-36. MR 0697495
[21] SHOREY T. N., STEWART C. L.: Pure powers in recurrence sequences and some related Diophatine equations. J. Number Theory 27 (1987), 324-352. MR 0915504
[22] WYLIE O.: In the Fibonacci series $F_1 = 1$, $F_2 = 1$, $F_{n+1} = F_n + F_{n-1}$ the first, second and twelfth terms are squares. Amer. Math. Monthly 71 (1964), 220-222.
Partner of
EuDML logo