[1] Allart P.:
Optimal stopping rules for correlated random walks with a discount. J. Appl. Prob. 41 (2004), 483–496
MR 2052586
[2] Bertsekas D. P.:
Dynamic Programming: Deterministic and Stochastic Models. Prentice Hall, Englewood Cliffs, N. J. 1987
MR 0896902 |
Zbl 0649.93001
[3] Bertsekas D. P., Shreve S. E.:
Stochastic Optimal Control: The Discrete Time Case. Academic Press, New York 1979
MR 0511544 |
Zbl 0633.93001
[4] Dijk N. M. Van:
Perturbation theory for unbounded Markov reward process with applications to queueing systems. Adv. in Appl. Probab. 20 (1988), 99–111
MR 0932536
[5] Dijk N. M. Van, Sladký K.:
Error bounds for nonnegative dynamic models. J. Optim. Theory Appl. 101 (1999), 449–474
MR 1684679
[6] Dynkin E. B., Yushkevich A. A.:
Controlled Markov Process. Springer-Verlag, New York 1979
MR 0554083
[7] Favero G., Runggaldier W. J.:
A robustness results for stochastic control. Systems Control Lett. 46 (2002), 91–97
MR 2010062
[8] Gordienko E. I.:
An estimate of the stability of optimal control of certain stochastic and deterministic systems. J. Soviet Math. 59 (1992), 891–899. (Translated from the Russian publication of 1989)
MR 1163393
[9] Gordienko E. I., Salem F. S.:
Robustness inequality for Markov control process with unbounded costs. Systems Control Lett. 33 (1998), 125–130
MR 1607814
[10] Gordienko E. I., Yushkevich A. A.:
Stability estimates in the problem of average optimal switching of a Markov chain. Math. Methods Oper. Res. 57 (2003), 345–365
MR 1990916 |
Zbl 1116.90401
[11] Gordienko E. I., Lemus-Rodríguez E., Montes-de-Oca R.:
Discounted cost optimality problem: stability with respect to weak metrics. In press in: Math. Methhods Oper. Res. (2008)
MR 2429561 |
Zbl 1166.60041
[12] Hernández-Lerma O., Lassere J. B.: Discrete-Time Markov Control Processes: Basic Optimality Criteria. Springer-Verlag, N.Y. 1996
[13] Jensen U.:
An optimal stopping problem in risk theory. Scand. Actuarial J.2 (1997), 149–159
MR 1492423 |
Zbl 0888.62104
[14] Meyn S. P., Tweedie R. L.:
Markov Chains and Stochastic Stability. Springer-Verlag, London 1993
MR 1287609 |
Zbl 1165.60001
[15] Montes-de-Oca R., Salem-Silva F.:
Estimates for perturbations of an average Markov decision process with a minimal state and upper bounded by stochastically ordered Markov chains. Kybernetika 41 (2005), 757–772
MR 2193864
[16] Montes-de-Oca R., Sakhanenko, A., Salem-Silva F.:
Estimate for perturbations of general discounted Markov control chains. Appl. Math. 30 (2003), 287–304
MR 2029538
[17] Muciek B. K.:
Optimal stopping of a risk process: model with interest rates. J. Appl. Prob. 39 (2002), 261–270
MR 1908943 |
Zbl 1011.62111
[18] Müller A.:
How does the value function of a Markov decision process depend on the transition probabilities? Math. Oper. Res. 22 (1997), 872–885
MR 1484687
[19] Schäl M.:
Conditions for optimality in dynamic programming and for the limit of $n$-stage optimal policies to be optimal. Z. Wahrsch. verw. Gebiete 32 (1975), 179–196
MR 0378841 |
Zbl 0316.90080
[21] Shiryaev A. N.:
Essential of Stochastic Finance. Facts, Models, Theory. World Scientific Publishing Co., Inc., River Edge, N.J. 1999
MR 1695318