[1] Crouch P. E., Lamnabhi-Lagarrigue F.:
State space realizations of nonlinear systems defined by input-output differential equations. In: Analysis and Optimization Systems (Lecture Notes in Control and Information Sciences 111, A. Bensousan and J. L. Lions, eds.), Springer–Verlag, Berlin – Heidelberg – New York 1988, pp. 138–149
MR 0956266 |
Zbl 0675.93031
[2] Delaleau E., Respondek W.:
Lowering the orders of derivatives of control in gener- alized state space systems. J. Math. Systems Estimation and Control 5 (1995), 3, 1–27
MR 1651823
[3] Dodson C. T. J., Poston T.:
Tensor Geometry. The Geometric Viewpoint and its Uses. Springer–Verlag, Berlin – Heidelberg – New York 1990
MR 1223091 |
Zbl 0732.53002
[5] Glad S. T.:
Nonlinear state space and input-output descriptions using differential polynomials. In: New Trands in Nonlinear Control Theory (Lecture Notes in Control and Information Sciences 122, J. Descusse, M. Fliess, A. Isidori, and P. Leborne, eds.), Springer–Verlag, New York 1989, pp. 182–189
MR 1229775 |
Zbl 0682.93030
[6] Kotta Ü.: Removing input derivatives in generalized state space systems: a linear algebraic approach. In: Proc. 4th Internat. Conference APEIE-98. Novosibirsk 1998, pp. 142–147
[7] Kotta Ü., Mullari T.:
Realization of nonlinear systems described by input/output differential equations: equivalence of different methods. European J. Control 11 (2005), 185–193
DOI 10.3166/ejc.11.185-193 |
MR 2194103
[8] Moog C. H., Zheng Y.-F., Liu P.: Input-output equivalence of nonlinear systems and their realizations. In: Proc. 15th IFAC World Congress, Barcelona 2002
[9] Schaft A. J. van der:
On realization of nonlinear systems described by higher-order differential equations. Math. Systems Theory 19 (1987), 239–275. Erratum: Math. Systems Theory 20 (1988), 305–306
MR 0871787
[10] Schaft A. J. van der:
Transformations and representations of nonlinear systems. In: Perspectives in Control Theory (B. Jakubczyk et al., eds.), Birkhäuser, Boston 1990, pp. 293–314
MR 1046887