Previous |  Up |  Next

Article

Keywords:
linear time invariant systems; positive real substitutions; properties preservation; algebraic Riccati equations; $H_{\infty }$-norm bounded systems
Summary:
We study in this paper Algebraic Riccati Equations associated with single-input single-output linear time-invariant systems bounded in $H_{\infty }$-norm. Our study is focused in the characterization of families of Algebraic Riccati Equations in terms of strictly positive real (of zero relative degree) substitutions applied to the associated $H_{\infty }$-norm bounded system, each substitution characterizing then a particular member of the family. We also consider here Algebraic Riccati Equations associated with systems characterized by both an $H_{\infty }$-norm constraint and an upper bound on their corresponding McMillan degree.
References:
[1] Anderson B. D. O., Vongpanitlerd S.: Network Analysis and Synthesis – A Modern Systems Approach. Prentice Hall, Englewood Cliffs, NJ 1972
[2] Anderson B. D. O., Bitmead R., Johnson C., Kokotovic P., Kosut R., Mareels I., Praly, L., Riedle B.: Stability of Adaptive Systems – Passivity and Averaging Analysis. MIT Press, Cambridge, MA 1982 MR 0846209
[3] Anderson B. D. O., Dasgupta S., Khargonekar P., Krauss K. J., Mansour M.: Robust strict positive realness: characterization and construction. IEEE Trans. Circuits and Systems 37 (1990), 869–876 DOI 10.1109/31.55062 | MR 1061872
[4] Bittanti S., Laub A. J., (eds.) J. C. Willems: The Riccati Equation. Springer–Verlag, Heidelberg 1991 MR 1132048 | Zbl 0734.34004
[5] Fernández G., Muñoz S., Sánchez R. A., Mayol W. W.: Simultaneous stabilization using evolutionary strategies. Internat. J. Control 68 (1997), 1417–1435 DOI 10.1080/002071797223091 | MR 1694487 | Zbl 0887.93054
[6] Fernández G.: Preservation of SPR functions and stabilization by substitutions in SISO plants. IEEE Trans. Automat. Control 44 (1999), 2171–2174 DOI 10.1109/9.802939 | MR 1735738 | Zbl 1136.93422
[7] Fernández G., Martínez-García J. C., Kučera V.: $H_{\infty }$-robustness preservation in SISO systems when applying SPR substitutions. Internat. J. Control 76 (2003), 728–740 DOI 10.1080/0020717031000105562 | MR 1979893
[8] Fernández G., Martínez-García J. C., Aguilar-George D.: Preservation of solvability conditions in Riccati equations when applying SPR0 substitutions. In: Proc. 41th IEEE Conference on Decision and Control, 2002, pp. 1048–1053
[9] Fernández G., Martínez-García J. C., Kučera, V., Aguilar-George D.: MIMO systems properties preservation under SPR substitutions. IEEE Trans. Circuits and Systems. II-Briefs 51 (2004), 222–227
[10] Goodwin G. C., Sin K. S.: Adaptive Filtering, Prediction and Control. Prentice–Hall, Englewood–Cliffs, NJ 1984 Zbl 0653.93001
[11] Khalil H. K.: Nonlinear Systems. Prentice–Hall, Englewood–Cliffs, NJ 1996 Zbl 1140.93456
[12] Kharitonov V. L.: Asymptotic stability of families of systems of linear differential equations. Differential’nye Uravneniya 14 (1978), 2086–2088 MR 0516709
[13] Lozano R., Brogliato B., Maschke, B., Egeland O.: Dissipative Systems Analysis and Control – Theory and Applications. Springer–Verlag, London 2000 MR 1843623 | Zbl 1121.93002
[14] Narendra K. S., Annaswamy A. M.: Stable Adaptive Systems. Prentice–Hall, Englewood Cliffs, NJ 1989 Zbl 1217.93081
[15] Narendra K. S., Taylor J. H.: Frequency Domain Criteria for Absolute Stability. Academic Press, New York 1973 MR 0329710 | Zbl 0266.93037
[16] Polyak B. T., Tsypkin, Ya. Z.: Stability and robust stability of uniform systems. Automat. Remote Control 57 (1996), 1606–1617 MR 1622194 | Zbl 0932.93062
[18] Wang L.: Robust stability of a class of polynomial families under nonlinearly correlated perturbations. System Control Lett. 30 (1997), 25–30 DOI 10.1016/S0167-6911(96)00073-4 | MR 1438055 | Zbl 0901.93048
[19] Wen J. T.: Time domain and frequency conditions for strict positive realness. IEEE Trans. Automat. Control 33 (1988), 988–992 DOI 10.1109/9.7263 | MR 0959031
[20] Zhou K., Doyle J. C., Glover K.: Robust and Optimal Control, Upper Saddle River. Prentice-Hall, Inc., Simon & Schuster, Englewood–Cliffs, NJ 1995
Partner of
EuDML logo