[2] Barmisch R. R.:
Necessary and sufficient conditions for quadratic stabilizability of an uncertain system. J. Optim. Theory Appl. 46 (1985), 399–408
DOI 10.1007/BF00939145 |
MR 0797844
[3] Bemporad A., Morari M.:
Robust model predictive control: a survey. In: Robustness in Identification and Control (A. Garulli, A. Tesi and A. Vicino, eds., Lecture Notes in Control and Information Sciences 245), Springer–Verlag, Berlin 1999, pp. 207–226
MR 1705197 |
Zbl 0979.93518
[4] Blanchini F.:
Ultimate boundedness control for uncertain discrete-time systems via set-induced Lyapunov function. IEEE Trans. Automat. Control 39 (1994), 428–433
DOI 10.1109/9.272351 |
MR 1265438
[7] Chisci L., Zappa G.: Robustifying a predictive controller against persistent disturbances. In: Proc. European Control Conference’99 (CD ROM), Karlsruhe 1999
[8] Geromel J. C., Peres P. L. D., Bernussou J.:
On a convex parameter space method for linear control design of uncertain systems. SIAM J. Control Optim. 29 (1991), 381–402
DOI 10.1137/0329021 |
MR 1092734 |
Zbl 0741.93020
[9] Gilbert E. G., Tan K. Tin:
Linear systems with state and control constraints: the theory and application of maximal output admissible sets. IEEE Trans. Automat. Control 36 (1991), 1008–1021
DOI 10.1109/9.83532 |
MR 1122477
[11] Keerthi S. S., Gilbert E. G.:
Computation of minimum-time feedback control laws for discrete-time systems with state-control constraints. IEEE Trans. Automat. Control 32 (1987), 432–435
DOI 10.1109/TAC.1987.1104625 |
Zbl 0611.93023
[12] Keerthi S. S., Gilbert E. G.:
Optimal infinite-horizon feedback laws for a general class of constrained discrete-time systems: stability and moving-horizon approximations. J. Optim. Theory Appl. 57 (1988), 265–293
DOI 10.1007/BF00938540 |
MR 0938875 |
Zbl 0622.93044
[13] Kolmanovsky I., Gilbert E. G.: Maximal output admissible sets for discrete-time systems with disturbance inputs. In: Proc. 1995 Amer. Control Conference, Seattle 1995, pp. 1995–1999