Previous |  Up |  Next

Article

Keywords:
fault detection; kernel estimator; trend estimation
Summary:
This article presents a new concept for a statistical fault detection system, including the detection, diagnosis, and prediction of faults. Theoretical material has been collected to provide a complete algorithm making possible the design of a usable system for statistical inference on the basis of the current value of a symptom vector. The use of elements of artificial intelligence enables self-correction and adaptation to changing conditions. The mathematical apparatus is founded on the methodology of testing statistical hypotheses, and on kernel estimators; the theoretical aspects have been documented by mathematical theorems. The work is oriented towards the problem of fault detection in dynamic systems under automatic control, but the basic formula is of a universal nature and can be used in a broad range of applications, including those outside the scope of engineering.
References:
[1] Abraham B., Ledolter J.: Statistical Methods for Forecasting. Wiley, New York 1983 MR 0719535 | Zbl 1082.62079
[2] Basseville M., Nikiforov I. V.: Detection of Abrupt Changes – Theory and Applications. Prentice–Hall, Englewood Cliffs, N.J. 1993 MR 1210954
[3] Berger J. O.: Statistical Decision Theory. Springer–Verlag, New York 1980 MR 0580664 | Zbl 0782.00068
[4] Billingsley P.: Probability and Measure. Wiley, New York 1979 MR 0534323 | Zbl 0822.60002
[5] Chen J., Patton R. J.: Robust Model–Based Fault Diagnosis for Dynamic Systems. Kluwer, Boston 1999 Zbl 0920.93001
[6] Devroe L., Györfi L.: Nonparametric Density Estimation: the $L_1 $ View. Wiley, New York 1985 MR 0780746
[7] Dertouzos M. L., Athans M., Spann R. N., Mason S. J.: Systems, Networks, and Computation. McGraw–Hill, New York 1972 Zbl 0355.93001
[8] Fisz M.: Probability Theory and Mathematical Statistics. Wiley, New York 1963 MR 0164358 | Zbl 0656.60001
[9] Gertler J. J.: Fault Detection and Diagnosis in Engineering Systems. Dekker, New York 1998
[10] Kulczycki P.: Almost certain time-optimal positional control. IMA J. Math. Control Inform. 13 (1996), 63–77 DOI 10.1093/imamci/13.1.63 | MR 1387021 | Zbl 0852.49007
[11] Kulczycki P.: An algorithm for Bayes parameter identification. Trans. ASME: Journal of Dynamic Systems, Measurement, and Control, Special Issue on the Identification of Mechanical Systems 123 (2001), 611–614 Zbl 1122.93082
[12] Kulczycki P.: A random approach to time-optimal control. Trans. ASME: Journal of Dynamic Systems, Measurement, and Control 121 (1999), 542–543
[13] Kulczycki P.: A test for comparing distribution functions with strongly unbalanced samples. Statistica, to appear MR 1985551
[14] Kulczycki P.: Fault Detection in Automated Systems by Statistical Methods. Alfa, Warsaw 1998
[15] Kulczycki P.: Fuzzy controller for mechanical systems. IEEE Trans. on Fuzzy Systems 8 (2000), 645–652 DOI 10.1109/91.873587
[16] Kulczycki P., Dawidowicz A. L.: Kernel estimator of quantile. Univ. Iagel, Acta Math. 37 (1999), 325–336 MR 1729545 | Zbl 1180.62043
[17] Kulczycki P., Wisniewski R.: Fuzzy controller for a system with uncertain load. Fuzzy Sets and Systems, to appear MR 1930739 | Zbl 1010.93514
[18] Mangoubi R. S.: Robust Estimation and Failure Detection. Springer–Verlag, London 1998
[19] Parrish R. S.: Comparison of quantile estimators in normal sampling. Biometrics 46 (1990), 247–257 DOI 10.2307/2531649 | Zbl 0715.62076
[20] Rao B. L. S. Prakasa: Nonparametric Functional Estimation. Academic Press, Orlando 1983 MR 0740865
[21] Schiøler H., Kulczycki P.: Neural network for estimating conditional distributions. IEEE Trans. Neural Networks 8 (1997), 1015–1025 DOI 10.1109/72.623203
[22] Sheather S. J., Marron J. S.: Kernel quantile estimators. J. Amer. Statist. Assoc. 85 (1990), 410–416 DOI 10.1080/01621459.1990.10476214 | MR 1141741 | Zbl 0705.62042
[23] Silverman B. W.: Density Estimation for Statistics and Data Analysis. Chapman and Hall, London 1986 MR 0848134 | Zbl 0617.62042
[24] Sohlberg B.: Supervision and Control for Industrial Processes. Springer–Verlag, London 1998
[25] Wand M. P., Jones M. C.: Kernel Smoothing. Chapman and Hall, London 1994 MR 1319818 | Zbl 0854.62043
[26] West M., Harrison J.: Bayesian Forecasting and Dynamic Models. Springer–Verlag, New York 1989 MR 1020301 | Zbl 0871.62026
Partner of
EuDML logo