[2] Dubois D., Prade H.:
Théorie des Possibilités – Applications à la Représentation des Connaissances en Informatique. Mason, Paris 1985
Zbl 0674.68059
[3] Dubois D., Prade, H., Sabbadin R.:
Qualitative decision theory with Sugeno integrals. In: Uncertainty in Artificial Intelligence – Proceedings of the 14th Conference (G. T. Cooper and S. Morales, eds.), Madison, Wisconsin, pp. 121–128
MR 1806517 |
Zbl 0984.91023
[4] Dubois D., Godo L., Prade, H., Zapico A.: Possibilistic representation of qualitative utility – an improved characterization. In: Proc. 6th International Conference on Information Processing and Management of Uncertainty (IPMU), Paris 1998, Vol. I, pp. 180–187
[6] Kramosil I.:
A probabilistic analysis of the Dempster combination rule. In: The Logica Yearbook 1997 (T. Childers, ed.), Filosofia, Prague 1998, pp. 175–187
MR 1614001
[7] Kramosil I.:
Alternative definitions of conditional possibilistic measures. Kybernetika 34 (1998), 2, 137–147
MR 1621506
[8] Kramosil I.: On stochastic and possibilistic independence. Neural Network World 4 (1999), 275–296
[9] Kramosil I.:
Boolean–like interpretation of Sugeno integral. In: Proc. European Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty (ECSQARU 99), (A. Hunter and S. Parsons, eds., Lecture Notes in Artificial Intelligence 1638), Springer Verlag, Berlin 2000, pp. 245–255
MR 1773322 |
Zbl 0930.28015
[10] Kramosil I.:
Nonspecificity degrees of basic probability assignments in Dempster–Shafer theory. Computers and Artificial Intelligence 18 (1999), 6, 559–574
MR 1742716 |
Zbl 0989.60009
[11] Vejnarová J.: Composition of possibility measures on finite spaces – preliminary results. In: Proc. 7th International Conference on Information Processing and Management of Uncertainty (IPMU), Paris 1998, Vol. I, 25–30