[2] H. Blum: Asymptotic Error Expansion and Defect in the Finite Element Method. University of Heidelberg, Institut für Angewandte Mathematik, Heidelberg, .
[3] H. Blum, Q. Lin, R. Rannacher:
Asymptotic error expansion and Richardson extrapolation for linear finite elements. Numer. Math. 49 (1986), 11–38.
DOI 10.1007/BF01389427 |
MR 0847015
[4] F. Brezzi:
On the existence, uniqueness, and approximation of saddle point problems arising from Lagrangian multipliers. RAIRO, Anal. Numér. 2 (1974), 129–151.
MR 0365287 |
Zbl 0338.90047
[5] H. Brunner, Y. Lin, S. Zhang:
Higher accuracy methods for second-kind Volterra integral equations based on asymptotic expansions of iterated Galerkin methods. J. Integral Equations Appl. 10 (1998), 375–396.
DOI 10.1216/jiea/1181074245 |
MR 1669667
[6] J. R. Cannon, Y. Lin:
Non-classical $H^1$ projection and Galerkin methods for nonlinear parabolic integro-differential equations. Calcolo 25 (1988), 187–201.
DOI 10.1007/BF02575943 |
MR 1053754
[7] J. R. Cannon Y. Lin:
A priori $L^2$ error estimates for finite element methods for nonlinear diffusion equations with memory. SIAM J. Numer. Anal. 27 (1990), 595–607.
DOI 10.1137/0727036 |
MR 1041253
[8] C. Chen, Y. Huang: Higher Accuracy Theory of FEM. Hunan Science Press, Changsha, 1995.
[10] R. E. Ewing, Y. Lin, T. Sun, J. Wang, S. Zhang:
Sharp $L^2$ error estimates and superconvergence of mixed finite element methods for nonFickian flows in porous media. SIAM J. Numer. Anal. 40 (2002), 1538–1560.
DOI 10.1137/S0036142900378406 |
MR 1951906
[11] R. E. Ewing, Y. Lin, J. Wang:
A numerical approximation of nonFickian flows with mixing length growth in porous media. Acta Math. Univ. Comenian. (N. S.) 70 (2001), 75–84.
MR 1865361
[12] R. E. Ewing, Y. Lin, J. Wang: A backward Euler method for mixed finite element approximations of nonFickian flows with non-smooth data in porous media. Preprint.
[13] R. E. Ewing, Y. Lin, J. Wang, S. Zhang:
$L^{\infty }$-error estimates and superconvergence in maximum norm of mixed finite element methods for nonFickian flows in porous media. Int. J. Numer. Anal. Model. 2 (2005), 301–328.
MR 2112650
[14] G. Fairweather, Q. Lin, Y. Lin, J. Wang, S. Zhang:
Asymptotic expansions and Richardson extrapolation of approximate solutions for second order elliptic problems on rectangular domains by mixed finite element methods. SIAM J. Numer. Anal. 44 (2006), 1122–1149.
DOI 10.1137/040614293 |
MR 2231858
[15] P. Helfrich:
Asymptotic expansion for the finite element approximations of parabolic problems. Bonn. Math. Schr. 158 (1984), 11–30.
MR 0793413
[16] S. Jia, D. Li, S. Zhang:
Asymptotic expansions and Richardson extrapolation of approximate solutions for integro-differential equations by mixed finite element methods. Adv. Comput. Math (to appear).
MR 2447252
[17] M. N. LeRoux, V. Thomée:
Numerical solutions of semilinear integro-differential equations of parabolic type with nonsmooth data. SIAM J. Numer. Anal. 26 (1989), 1291–1309.
DOI 10.1137/0726075
[18] Q. Lin, I. H. Sloan, R. Xie:
Extrapolation of the iterated-collocation method for integral equations of the second kind. SIAM J. Numer. Anal. 27 (1990), 1535–1541.
DOI 10.1137/0727090 |
MR 1080337
[19] Q. Lin, N. Yan: The Construction and Analysis of High Efficiency Finite Element Methods. Hebei University Publishers, , 1996.
[21] Q. Lin, S. Zhang, N. Yan:
Asymptotic error expansion and defect correction for Sobolev and viscoelasticity type equations. J. Comput. Math. 16 (1998), 57–62.
MR 1606093
[22] Q. Lin, S. Zhang, N. Yan:
High accuracy analysis for integrodifferential equations. Acta Math. Appl. Sin. 14 (1998), 202–211.
DOI 10.1007/BF02677428 |
MR 1620823
[23] Q. Lin, S. Zhang, N. Yan:
Methods for improving approximate accuracy for hyperbolic integro-differential equations. Syst. Sci. Math. Sci. 10 (1997), 282–288.
MR 1469188
[24] Q. Lin, S. Zhang, N. Yan:
Extrapolation and defect correction for diffusion equations with boundary integral conditions. Acta Math. Sci. 17 (1997), 409–412.
MR 1613231
[25] Q. Lin, S. Zhang, N. Yan:
An acceleration method for integral equations by using interpolation post-processing. Adv. Comput. Math. 9 (1998), 117–128.
DOI 10.1023/A:1018925103993 |
MR 1662762
[26] T. Lin, Y. Lin, M. Rao, S. Zhang:
Petrov-Galerkin methods for linear Volterra integro-differential equations. SIAM J. Numer. Anal. 38 (2000), 937–963.
DOI 10.1137/S0036142999336145 |
MR 1781210
[27] Y. Lin:
On maximum norm estimates for Ritz-Volterra projections and applications to some time-dependent problems. J. Comput. Math. 15 (1997), 159–178.
MR 1448820
[28] Y. Lin, V. Thomée, L. Wahlbin:
Ritz-Volterra projection onto finite element spaces and applications to integrodifferential and related equations. SIAM J. Numer. Anal. 28 (1991), 1047–1070.
DOI 10.1137/0728056 |
MR 1111453
[29] G. Marchuk, V. Shaidurov:
Difference Methods and Their Extrapolation. Springer, New York, 1983.
MR 0705477
[31] A. K. Pani, V. Thomée, L. Wahlbin:
Numerical methods for hyperbolic and parabolic integro-differential equations. J. Integral Equations Appl. 4 (1992), 533–584.
DOI 10.1216/jiea/1181075713 |
MR 1200801
[32] I. H. Sloan, V. Thomée:
Time discretization of an integro-differential equation of parabolic type. SIAM J. Numer. Anal. 23 (1986), 1052–1061.
DOI 10.1137/0723073 |
MR 0859017
[33] V. Thomée, N. Zhang:
Error estimates for semidiscrete finite element methods for parabolic integro-differential equations. Math. Comput. 53 (1989), 121–139.
DOI 10.2307/2008352 |
MR 0969493
[35] J. Wang:
Asymptotic expansions and $L^{\infty }$-error estimates for mixed finite element methods for second order elliptic problems. Numer. Math. 55 (1989), 401–430.
DOI 10.1007/BF01396046 |
MR 0997230
[37] S. Zhang, T. Lin, Y. Lin, M. Rao:
Extrapolation and a-posteriori error estimators of Petrov-Galerkin methods for non-linear Volterra integro-differential equations. J. Comp. Math. 19 (2001), 407–422.
MR 1842853
[38] A. Zhou, C. B. Liem, T. M. Shih, T. Lü:
A multi-parameter splitting extrapolation and a parallel algorithm. Syst. Sci. Math. Sci. 10 (1997), 253–260.
MR 1469184
[39] Q. Zhu, Q. Lin: Superconvergence Theory of the Finite Element Methods. Hunan Science Press, , 1989.