[1] F. Ammar-Khodja, M. Mokhtar-Kharroubi:
On the exponential stability of advection semigroups with boundary operator. Math. Models Methods Appl. Sci. 8 (1998), 95–106.
DOI 10.1142/S0218202598000056 |
MR 1612007
[3] G. Borgioli, S. Totaro:
Semigroup generation properties of the streaming operator in dependence of the boundary conditions. Transp. Theory Stat. Phys. 25 (1996), 491–502.
DOI 10.1080/00411459608220716 |
MR 1407549
[4] G. Borgioli, S. Totaro:
3D-streaming operator with multiplying boundary conditions: Semigroup generation properties. Semigroup Forum 55 (1997), 110–117.
DOI 10.1007/PL00005905 |
MR 1446663
[5] M. Boulanouar:
L’opérateur d’Advection: existence d’un $C_0$-semi-groupe (I). Transp. Theory Stat. Phys. 31 (2002), 153–167.
MR 1904837
[6] Ph. Clément, H. J. A. M. Hijmans, C. J. van Duijn, B. de Paqter:
One-Parameter Semigroups. North-Holland, Amsterdam-New York, 1987.
MR 0915552
[7] W. Greenberg, C. van der Mee, V. Protopopescu:
Boundary Value Problems in Abstract Kinetic Theory. Birkhäuser, Basel, 1987.
MR 0896904
[8] R. Dautray, J.-L. Lions:
Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques. Vol. 9: Évolution: numérique, transport. Masson, Paris, 1988.
MR 1016606
[9]
One-Parameter Semigroups of Positive operators. Lecture Notes in Mathematics 1184. R. Nagel (ed.), Springer, Berlin-New York, 1986.
MR 0839450
[11] M. Schechter:
Spectra of Partial Differential Operators. North-Holland, Amsterdam, 1971.
MR 0869254 |
Zbl 0225.35001
[12] R. Sentis: Equation de transport avec des conditions aux limites de type réflexion. Rapport de recherche, INRIA no. 162, Le Chesnay (France).
[13] S. Ukai:
Solutions of the Boltzmann equation. Patterns and waves. Stud. Math. Appl. 18 (1996), 37–96.
MR 0882376
[14] J. Voigt: Functional analytic treatment of the initial boundary value problem for collisionless gases. Habilitationsschrift, Universität München, 1981.
[15] L. Weis:
The stability of positive semigroups on $L_p$-spaces. Proc. Am. Mat. Soc. 123 (1995), 3089–3094.
MR 1273529