[1] I. Babuška, J. Osborn:
Eigenvalue problems. In: Handbook of Numerical Analysis, Vol. II, P. G. Ciarlet, J.-L. Lions (eds.), North Holland, Amsterdam, 1991, pp. 641–787.
MR 1115240
[2] G. Bastard: Wave Mechanics Applied to Semiconductor Heterostructures. Les editions de physique, Les Ulis Cedex, 1988.
[3] M. Betcke: Iterative projection methods for symmetric nonlinear eigenvalue problems with applications. In preparation.
[5] S. L. Chuang: Physics of Optoelectronic Devices. John Wiley & Sons, New York, 1995.
[6] E. A. de Andrada e Silva, G. C. La Rocca, and F. Bassani:
Spin-split subbands and magneto-oscillations in III–V asymmetric heterostructures. Phys. Rev. B 50 (1994), 8523–8533.
DOI 10.1103/PhysRevB.50.8523
[7] FEMLAB, Version 3.1. COMSOL, Inc., Burlington, 2004.
[8] E. O. Kane: The $k \cdot p$ method. In: Semiconductors and Semimetals. Physics of III–V Compounds, Vol 1, R. K. Willardson, A. C. Beer (eds.), Academic Press, , 1966, pp. 75–100.
[9] Y. Li, O. Voskoboynikov, C. P. Lee, S. M. Sze, and O. Tretyak:
Electron energy state spin-splitting in 3d cylindrical semiconductor quantum dots. Eur. Phys. J. B 28 (2002), 475–481.
DOI 10.1140/epjb/e2002-00250-6
[10] Y. Li, O. Voskoboynikov, J.-L. Liu, C. P. Lee, and S. M. Sze: Spin dependent boundary conditions and spin splitting in cylindrical quantum dots. In: Techn. Proc. of Internat. Conference on Modeling and Simulation of Microsystems, 2001, pp. 562–565.
[11] J. M. Luttinger, W. Kohn:
Motion of electrons and holes in perturbed periodic fields. Phys. Rev. 97 (1954), 869–883.
DOI 10.1103/PhysRev.97.869
[13] B. Opic, A. Kufner:
Hardy-Type Inequalities. Pitman Research Notes in Mathematics Vol. 219. Longman Scientific & Technical, Harlow, 1990.
MR 1069756
[14] T. Schäpers, G. Engels, J. Lange, T. Klocke, M. Hollfelder, and H. Lüth: Effect of the heterointerface on the spin splitting in the modulation doped In$_{x}$Ga$_{1-x}$As/InP quantum wells for $B\rightarrow 0$. J. Appl. Phys. 83 (1998), 4324–4333.
[15] O. Voskoboynikov, O. Bauga, C. P. Lee, and E. Tretyak:
Magnetic properties of parabolic quantum dots in the presence of the spin-orbit interaction. J. Appl. Phys. 94 (2003), 5891–5895.
DOI 10.1063/1.1614426
[17] O. Voskoboynikov, C. P. Lee, and E. Tretyak:
Spin-orbit splitting in semiconductor quantum dots with a parabolic confinement potential. Phys. Rev. B 63 (2001), 165306-1–165306-6.
DOI 10.1103/PhysRevB.63.165306
[18] H. Voss: Initializing iterative projection methods for rational symmetric eigenproblems. In: Online Proceedings of the Dagstuhl Seminar Theoretical and Computational Aspects of Matrix Algorithms, Schloss Dagstuhl, 2003ftp://ftp.dagstuhl.de/pub/Proceedings/03/03421/03421.VoszHeinrich.Other.pdf, 2003.
[20] H. Voss:
A rational eigenvalue problem governing relevant energy states of a quantum dots. J. Comput. Phys. 217 (2006), 824–833.
MR 2260626
[21] H. Voss, B. Werner:
A minimax principle for nonlinear eigenvalue problems with applications to nonoverdamped systems. Math. Methods Appl. Sci. 4 (1982), 415–424.
DOI 10.1002/mma.1670040126 |
MR 0669135