[1] B. Achchab, S. Achchab, O. Axelsson, and A. Souissi:
Upper bound of the constant in strengthened C.B.S. inequality for systems of linear partial differential equations. Numer. Algorithms 32 (2003), 185–191.
DOI 10.1023/A:1024058625449 |
MR 1989366
[4] O. Axelsson:
On multigrid methods of the two-level type. In: Multigrid Methods. Lecture Notes in Mathematics, Vol. 960, W. Hackbusch, U. Trotenberg (eds.), Springer-Verlag, Berlin, 1982, pp. 352–367.
MR 0685778 |
Zbl 0505.65040
[6] R. Blaheta:
Nested tetrahedral grids and strengthened CBS inequality. Numer. Linear Algebra Appl. 10 (2003), 619–637.
DOI 10.1002/nla.340 |
MR 2030627
[7] R. Blaheta, S. Margenov, and M. Neytcheva:
Uniform estimates of the constant in the strengthened CBS inequality for anisotropic non-conforming FEM systems. Numer. Linear Algebra Appl. 11 (2004), 309–326.
DOI 10.1002/nla.350 |
MR 2057704
[8] D. Braess:
Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, 2nd edition. Cambridge University Press, Cambridge, 2001, pp. 309–326.
MR 1827293
[9] J. H. Brandts, S. Korotov, and M. Křížek: The strengthened Cauchy-Bunyakowski-Schwarz inequality for $n$-simplicial linear finite elements. In: Springer Lecture Notes in Computer Science, Vol. 3401, Springer-Verlag, Berlin, 2005, pp. 203–210.
[10] J. H. Brandts, S. Korotov, and M. Křížek: Survey of discrete maximum principles for linear elliptic and parabolic problems. In: Proc. Conf. ECCOMAS 2004, P. Neittaanmäki et al. (eds.), Univ. of Jyväskylä, 2004, pp. 1–19.
[11] J. H. Brandts, S. Korotov, and M. Křížek:
Dissection of the path-simplex in $\mathbb{R}^n$ into $n$ path-subsimplices. Linear Algebra Appl. 421 (2007), 382–393.
MR 2294350
[13] S. Brenner, L. R. Scott:
The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics 15. Springer-Verlag, New York, 1994.
MR 1278258
[14] P. Ciarlet:
The Finite Element Method for Elliptic Problems. North Holland, Amsterdam, 1978.
MR 0520174 |
Zbl 0383.65058
[15] C. M. Chen: Optimal points of stresses for tetrahedron linear element. Nat. Sci. J. Xiangtan Univ. 3 (1980), 16–24. (Chinese)
[18]
FEMLAB version 2.2 (2002). Multiphysics in Matlab, for use with Matlab. COMSOL, Sweden,
http://www.femlab.com
[19] H. Fujii:
Some remarks on finite element analysis of time-dependent field problems. In: Theory Pract. Finite Elem. Struct. Anal, Univ. Tokyo Press, Tokyo, 1973, pp. 91–106.
Zbl 0373.65047
[21] J. Karátson, S. Korotov:
Discrete maximum principles for finite element solutions of nonlinear elliptic problems with mixed boundary conditions. Numer. Math. 99 (2005), 669–698.
DOI 10.1007/s00211-004-0559-0 |
MR 2121074
[22] M. Křížek, Q. Lin:
On the diagonal dominance of stiffness matrices in 3D. East-West J. Numer. Math. 3 (1995), 59–69.
MR 1331484
[24]
Finite Element Methods: Superconvergence, Post-processing and A Posteriori Estimates. Proc. Conf. Univ. of Jyväskylä, 1996. Lecture Notes in Pure and Applied Mathematics, Vol. 196. M. Křížek, P. Neittaanmäki, and R. Stenberg (eds.), Marcel Dekker, New York, 1998.
MR 1602809
[25] J. C. Nédélec:
Mixed finite elements in $\mathbb{R}^3$. Numer. Math. 35 (1980), 315–341.
DOI 10.1007/BF01396415
[27] L. A. Oganesjan, L. A. Ruhovets:
Study of the rate of convergence of variational difference schemes for second-order elliptic equations in a two-dimensional field with a smooth boundary. Zh. Vychisl. Mat. Mat. Fiz. 9 (1969), 1102–1120.
MR 0295599
[28] V. Ruas Santos:
On the strong maximum principle for some piecewise linear finite element approximate problems of non-positive type. J. Fac. Sci., Univ. Tokyo, Sect. IA Math. 29 (1982), 473–491.
MR 0672072 |
Zbl 0488.65052
[30] P. Tong:
Exact solutions of certain problems by finite-element method. AIAA J. 7 (1969), 178–180.
DOI 10.2514/3.5067