[1] I. Babuška, G. Caloz, and J. E. Osborn:
Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM J. Numer. Anal. 31 (1994), 945–981.
DOI 10.1137/0731051 |
MR 1286212
[2] J. M. Melenk, I. Babuška: Approximation with harmonic and generalized harmonic polynomials in the partition of unity method. Comput. Assist. Mech. Eng. Sci. 4 (1997), 607–632.
[4] I. Babuška, J. M. Melenk:
The partition of unity method. Int. J. Numer. Methods. Eng. 40 (1997), 727–758.
MR 1429534
[5] J. M. Melenk: On generalized finite element methods. PhD. thesis, University of Maryland, 1995.
[9] T. Strouboulis, L. Zhang, and I. Babuška:
Generalized finite element method using mesh-based handbooks: Application to problem in domains with many voids. Comput. Methods Appl. Mech. Eng. 192 (2003), 3109–3161.
DOI 10.1016/S0045-7825(03)00347-5 |
MR 2007029
[10] T. Strouboulis, L. Zhang, and I. Babuška:
$p$-version of the generalized FEM using mesh-based handbooks with applications to multiscale problems. Int. J. Numer. Methods Eng. 60 (2004), 1639–1672.
DOI 10.1002/nme.1017 |
MR 2069141
[11] N. Sukumar, D. L. Chopp, N. Moës, and T. Belytschko:
Modeling holes and inclusions by level sets in the extended finite element method. Comput. Methods Appl. Mech. Eng. 190 (2001), 6183–6200.
DOI 10.1016/S0045-7825(01)00215-8 |
MR 1857695
[12] O. Laghrouche, P. Bettess:
Solving short wave problems using special finite elements—towards an adaptive approach. In: The Mathematics of Finite Elements and Applications X, J. R. Whiteman (ed.), Elsevier, Amsterdam, 1999, pp. 181–194.
MR 1801975
[13] P. Bettess, J. Shirron, O. Laghrouche, B. Peseux, R. Sugimoto, and J. Trevelyan:
A numerical integration scheme for special finite elements for the Helmholtz equation. Int. J. Numer. Methods Eng. 56 (2003), 531–552.
DOI 10.1002/nme.575 |
MR 1965603
[14] R. Sugimoto, P. Bettess, and J. Trevelyan:
A numerical integration scheme for special quadrilateral finite elements for the Helmholtz equation. Commun. Numer. Methods Eng. 19 (2003), 233–245.
DOI 10.1002/cnm.584 |
MR 1965603
[15] E. Perrey-Debain, O. Laghrouche, P. Bettess, and J. Trevelyan:
Plane-wave basis finite elements and boundary elements for three-dimensional wave scattering. Philos. Trans. R. Soc. Lond. A 362 (2004), 561–577.
DOI 10.1098/rsta.2003.1335 |
MR 2075907
[16] O. Laghrouche, P. Bettess, E. Perrey-Debain, and J. Trevelyan:
Wave interpolation finite elements for Helmholtz problems with jumps in the wave speed. Comput. Methods Appl. Mech. Eng. 194 (2005), 367–381.
DOI 10.1016/j.cma.2003.12.074 |
MR 2105168
[17] P. Ortiz, E. Sanchez:
An improved partition of unity finite element model for diffraction problems. Int. J. Numer. Methods Eng. 50 (2001), 2727–2740.
DOI 10.1002/nme.161
[20] C. Farhat, I. Harari, and U. Hetmaniuk:
A discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency regime. Comput. Methods Appl. Mech. Eng. 192 (2003), 1389–1419.
DOI 10.1016/S0045-7825(02)00646-1 |
MR 1963058
[21] P. Rouch, P. Ladevèze:
The variational theory of complex rays: A predictive tool for medium-frequency vibrations. Comput. Methods Appl. Mech. Eng. 192 (2003), 3301–3315.
DOI 10.1016/S0045-7825(03)00352-9
[22] H. Riou, P. Ladevèze, and P. Rouch:
Extension of the variational theory of complex rays to shells for medium-freqency vibrations. J. Sound Vib. 272 (2004), 341–360.
DOI 10.1016/S0022-460X(03)00775-2
[23] P. Ladevèze, H. Riou:
Calculation of medium-frequency vibrations over a wide frequency range. Comput. Methods Appl. Mech. Eng. 194 (2005), 3167–3191.
DOI 10.1016/j.cma.2004.08.009 |
MR 2142539
[26] F. Ihlenburg:
Finite Element Analysis of Acoustic Scattering. Springer-Verlag, New York, 1998.
MR 1639879 |
Zbl 0908.65091
[27] I. Babuška, S. Sauter: Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers?, SIAM J. Numer. Anal. 34 (1997), 2392–2423.
DOI 10.1137/S0036142994269186 |
MR 1480387
[28] T. Strouboulis, I. Babuška, and R. Hidajat:
The generalized finite element method for Helmholtz equation: theory, computation, and open problems. Comput. Methods Appl. Mech. Eng., Accepted for publication.
MR 2240576
[29] P. J. Davis, P. Rabinowitz:
Methods of Numerical Integration. Academic Press, San Diego, 1984.
MR 0760629
[30] D. S. Jones:
Acoustic and Electromagnetic Waves. Oxford University Press, New York, 1986.
MR 0943347
[31] B. A. Szabó, I. Babuška:
Finite Element Analysis. John Wiley & Sons, New York, 1991.
MR 1164869
[32] T. Strouboulis, L. Zhang, D. Wang, and I. Babuška:
A posteriori error estimation for generalized finite element methods. Comput. Methods Appl. Mech. Eng. 195 (2006), 852–879.
DOI 10.1016/j.cma.2005.03.004 |
MR 2195292