[1] I. Babuška: On randomized solution of Laplace’s equation. Čas. Pěst. Mat. 86 (1961), 269–276.
[3] I. Babuška, R. Tempone, and G. Zouraris:
Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42 (2004), 800–825.
DOI 10.1137/S0036142902418680 |
MR 2084236
[4] V. I. Bogachev:
Gaussian Measures. AMS Mathematical Surveys and Monographs Vol. 62. AMS, Providence, 1998.
MR 1642391
[6] W. A. Light, E. W. Cheney:
Approximation Theory in Tensor Product Spaces. Lecture Notes in Mathematics Vol. 1169. Springer-Verlag, Berlin, 1985.
DOI 10.1007/BFb0075392 |
MR 0817984
[7] P. G. Ciarlet:
The Finite Element Method for Elliptic Problems. Elsevier Publ. North Holland, Amsterdam, 1978.
MR 0520174 |
Zbl 0383.65058
[8] M. Dahmen, H. Harbrecht, and R. Schneider:
Compression techniques for boundary integral equations—optimal complexity estimates. SIAM J. Numer. Anal. 43 (2006), 2251–2271.
DOI 10.1137/S0036142903428852 |
MR 2206435
[9] W. Dahmen, R. Stevenson:
Element-by-element construction of wavelets satisfying stability and moment conditions. SIAM J. Numer. Anal. 37 (1999), 319–352.
DOI 10.1137/S0036142997330949 |
MR 1742747
[10] S. C. Eisenstat, H. C. Elman, M. H. Schultz:
Variational iterative methods for nonsymmetric systems of linear equations. SIAM J. Numer. Anal. 20 (1983), 345–357.
DOI 10.1137/0720023 |
MR 0694523
[12] S. Hildebrandt, N. Wienholtz:
Constructive proofs of representation theorems in separable Hilbert space. Commun. Pure Appl. Math. 17 (1964), 369–373.
DOI 10.1002/cpa.3160170309 |
MR 0166608
[15] S. Larsen: Numerical analysis of elliptic partial differential equations with stochastic input data. Doctoral Dissertation, Univ. of Maryland, 1985.
[16] M. Ledoux, M. Talagrand:
Probability in Banach Spaces. Isoperimetry and Processes. Springer-Verlag, Berlin, 1991.
MR 1102015
[18] W. McLean:
Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge, 2000.
MR 1742312 |
Zbl 0948.35001
[19] J. C. Nédélec, J. P. Planchard:
Une méthode variationelle d’éléments finis pour la résolution numérique d’un problème extérieur dans $\mathbb{R}^3$. RAIRO Anal. Numér. 7 (1973), 105–129.
MR 0424022
[20] G. Schmidlin, C. Lage, and C. Schwab:
Rapid solution of first kind boundary integral equations in $\mathbb{R}^3$. Eng. Anal. Bound. Elem. 27 (2003), 469–490.
DOI 10.1016/S0955-7997(02)00156-X
[21] T. von Petersdorff, C. Schwab:
Wavelet approximations for first kind boundary integral equations in polygons. Numer. Math. 74 (1996), 479–516.
DOI 10.1007/s002110050226 |
MR 1414419
[22] T. von Petersdorff, C. Schwab:
Numerical solution of parabolic equations in high dimensions. M2AN, Math. Model. Numer. Anal. 38 (2004), 93–127.
DOI 10.1051/m2an:2004005 |
MR 2073932
[23] R. Schneider:
Multiskalen- und Wavelet-Matrixkompression. Advances in Numerical Mathematics. Teubner, Stuttgart, 1998.
MR 1623209
[26] S. A. Smolyak:
Quadrature and interpolation formulas for tensor products of certain classes of functions. Sov. Math. Dokl. 4 (1963), 240–243.
Zbl 0202.39901
[27] V. N. Temlyakov:
Approximation of Periodic Functions. Nova Science Publ., New York, 1994.
MR 1373654
[28] G. W. Wasilkowski, H. Wozniakowski:
Explicit cost bounds of algorithms for multivariate tensor product problems. J. Complexity 11 (1995), 1–56.
DOI 10.1006/jcom.1995.1001 |
MR 1319049