[2]
Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. A. van der Vorst (eds.), SIAM, Philadelphia, 2000.
MR 1792141 |
Zbl 0965.65058
[4] C. Conca, J. Planchard, and M. Vanninathan:
Existence and location of eigenvalues for fluid-solid structures. Comput. Methods Appl. Mech. Eng. 77 (1989), 253–291.
DOI 10.1016/0045-7825(89)90078-9 |
MR 1031134
[5] P. Hager: Eigenfrequency Analysis. FE-Adaptivity and a Nonlinear Eigenvalue Problem. PhD. thesis, Chalmers University of Technology, Göteborg, 2001.
[6] P. Hager, N. E. Wiberg: The rational Krylov algorithm for nonlinear eigenvalue problems. In: Computational Mechanics for the Twenty-First Century, B. H. V. Topping (ed.), Saxe-Coburg Publications, Edinburgh, 2000, pp. 379–402.
[7] E. Jarlebring: Krylov Methods for Nonlinear Eigenvalue Problems. Master thesis, Royal Institute of Technology. Dept. Numer. Anal. Comput. Sci., Stockholm, 2003.
[8] V. N. Kublanovskaya:
On an application of Newton’s method to the determination of eigenvalues of $\lambda $-matrices. Dokl. Akad. Nauk. SSSR 188 (1969), 1240–1241.
MR 0250470 |
Zbl 0242.65042
[10] C. Lanczos:
An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Nat. Bur. Standards 45 (1950), 255–282.
DOI 10.6028/jres.045.026 |
MR 0042791
[14] A. Ruhe:
Computing nonlinear eigenvalues with spectral transformation Arnoldi. Z. Angew. Math. Mech. 76 (1996), 17–20.
Zbl 0886.65055
[16] A. Ruhe:
The rational Krylov algorithm for nonlinear matrix eigenvalue problems. Zap. Nauchn. Semin. POMI 268 (2000), 176–180.
MR 1795855 |
Zbl 1029.65035
[17] G. L. Sleijpen, G. L. Booten, D. R. Fokkema, and H. A. van der Vorst:
Jacobi-Davidson type methods for generalized eigenproblems and polynomial eigenproblems. BIT 36 (1996), 595–633.
DOI 10.1007/BF01731936 |
MR 1410100
[18] G. L. Sleijpen, H. A. van der Vorst:
A Jacobi-Davidson iteration method for linear eigenvalue problems. SIAM J. Matrix Anal. Appl. 17 (1996), 401–425.
DOI 10.1137/S0895479894270427 |
MR 1384515
[20] H. Voss:
An Arnoldi method for nonlinear symmetric eigenvalue problems. In: Online Proceedings of the SIAM Conference on Applied Linear Algebra, Williamsburg, 2003,
http://www.siam.org/meetings/laa03/
[21] H. Voss: Initializing iterative projection methods for rational symmetric eigenproblems. In: Online Proceedings of the Dagstuhl Seminar Theoretical and Computational Aspects of Matrix Algorithms, Schloss Dagstuhl 2003, ftp://ftp.dagstuhl.de/pub/Proceedings/03/03421/03421.VoszHeinrich.Other.pdf, 2003.
[22] H. Voss:
A Jacobi-Davidson method for nonlinear eigenproblems. In: Computational Science—ICCS 2004, 4th International Conference, Kraków, Poland, June 6–9, 2004, Proceedings, Part II, Vol. 3037 of Lecture Notes in Computer Science, M. Buback, G. D. van Albada, P. M. A. Sloot, and J. J. Dongarra (eds.), Springer-Verlag, Berlin, 2004, pp. 34–41.
MR 2213179 |
Zbl 1080.65535
[23] H. Voss, B. Werner:
A minimax principle for nonlinear eigenvalue problems with applications to nonoverdamped systems. Math. Methods Appl. Sci. 4 (1982), 415–424.
DOI 10.1002/mma.1670040126 |
MR 0669135