Previous |  Up |  Next

Article

Keywords:
miscible mixture; compressible fluid; uniqueness; zero force
Summary:
We consider a continuum model describing steady flows of a miscible mixture of two fluids. The densities $\rho _i$ of the fluids and their velocity fields $u^{(i)}$ are prescribed at infinity: $\rho _i|_{\infty } = \rho _{i \infty } > 0$, $u^{(i)}|_{\infty } = 0$. Neglecting the convective terms, we have proved earlier that weak solutions to such a reduced system exist. Here we establish a uniqueness type result: in the absence of the external forces and interaction terms, there is only one such solution, namely $\rho _i \equiv \rho _{i \infty }$, $u^{(i)} \equiv 0$, $i=1,2$.
References:
[1] R. J. DiPerna, P.-L.  Lions: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98 (1989), 511–547. DOI 10.1007/BF01393835 | MR 1022305
[2] R. Erban: On the static-limit solutions to the Navier-Stokes equations of compressible flow. J.  Math. Fluid Mech. 3 (2001), 393–408. DOI 10.1007/PL00000977 | MR 1867888 | Zbl 1007.35054
[3] E. Feireisl: On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable. Commentat. Math. Univ. Carol. 42 (2001), 83–98. MR 1825374 | Zbl 1115.35096
[4] E. Feireisl: Dynamics of Viscous Compressible Fluids. Oxford University Press, New York, 2004. MR 2040667 | Zbl 1080.76001
[5] E. Feireisl, H.  Petzeltová: On the zero-velocity-limit solutions to the Navier-Stokes equations of compressible flow. Manuscr. Math. 97 (1998), 109–116. DOI 10.1007/s002290050089 | MR 1642646
[6] J. Frehse, S.  Goj, and J. Málek: A Stokes-like system for mixtures. In: Nonlinear Problems in Mathematical Physics and Related Topics  II. International Mathematical Series, M. Sh.  Birman, S.  Hildebrandt, V. A.  Solonnikov, and N. N.  Uraltseva (eds.), Kluwer, New York, 2002, pp. 119–136. MR 1971993
[7] J. Frehse, S.  Goj, and J. Málek: Existence of solutions to a Stokes-like system for mixtures. SIAM J.  Math. Anal. 36 (2005), 1259–1281. MR 2139449
[8] A. E. Green, P. M.  Naghdi: A dynamical theory of interacting continua. Internat. J.  Engrg. Sci. 3 (1965), 231–241. DOI 10.1016/0020-7225(65)90046-7 | MR 0186267
[9] A. E. Green, P. M.  Naghdi: A unified procedure for construction of theories of deformable media. III.  Mixtures of interacting continua. Proc. Roy. Soc. London Ser.  A  448 (1995), 379–388. MR 1327687
[10] J. G. Heywood, M.  Padula: On the existence and uniqueness theory for steady compressible viscous flow. In: Fundamental Directions in Mathematical Fluid Mechanics, G. P. Galdi et al. (eds.), Birkhäuser-Verlag, Basel, 2000, pp. 171–189. MR 1799398
[11] P.-L. Lions: Mathematical Topics in Fluid Mechanics. Vol.  2: Compressible Models. Oxford University Press, New York, 1998. MR 1637634 | Zbl 0908.76004
[12] A. Novotný: Compactness of steady compressible isentropic Navier-Stokes equations via the decomposition method (the whole 3-D space). In: Theory of the Navier-Stokes Equations, J. G. Heywood et al. (eds.), World Sci. Publishing, River Edge, 1998, pp. 106–120. MR 1643029 | Zbl 0934.76079
[13] K. R. Rajagopal, L.  Tao: Mechanics of Mixtures. World Scientific Publishing, River Edge, 1995. MR 1370661
[14] C. Truesdell: Mechanical basis of diffusion. J.  Chemical Physics 37 (1962), 2337.
Partner of
EuDML logo