[2] K. J. Brown, C. Cosner, and J. Fleckinger:
Principal eigenvalues for problems with indefinite weight functions on $\mathbb{R}^{N}$. Proc. Amer. Math. Soc. 109 (1990), 147–155.
MR 1007489
[3] L. Boccardo, J. Fleckinger-Pellé, and F. de Thélin:
Existence of solutions for some nonlinear cooperative systems. Differential Integral Equations 7 (1994), 689–698.
MR 1270098
[4] L. Cardoulis: Problèmes elliptiques: Applications de la théorie spectrale et étude de systèmes, existence de solutions. PhD Thesis, Univ. des Sc. Sociales de Toulouse, 1997.
[5] G. Caristi, E. Mitidieri:
Maximum principles for a class of non-cooperative elliptic systems. Delft Progr. Rep. 14 (1990), 33–56.
MR 1045316
[7] A. Djellit: Valeurs propres de problèmes elliptiques indéfinis sur des ouverts non bornés de $\mathbb{R}^{N}$. PhD Thesis, U.P.S., Toulouse, 1992.
[8] A. Djellit, J. Fleckinger:
Valeurs propres de problèmes elliptiques. Boll. Unione Mat. Ital., VII. Ser. B7 (1993), 857–874.
MR 1255651
[9] A. Djellit, A. Yechoui:
Existence and non-existence of a principal eigenvalue for some boundary value problems. Maghreb Math. Rev. 6 (1997), 29–37.
MR 1489164
[10] J. Fleckinger-Pellé, J. Hernández, F. de Thélin: Principe du maximum pour un système elliptique non linéaire. C.R. Acad. Sci. Paris Sér. I Math. 314 (1992), 665–668.
[11] J. Fleckinger-Pellé, J. Hernández, and F. de Thélin: On maximum principle and existence of solutions for some cooperative elliptic systems. Differential Integral Equations 8 (1995), 69–85.
[12] J. Fleckinger, J. Hernández, and F. de Thélin:
A maximum principle for linear cooperative elliptic systems. In: Differential Equations with Applications to Mathematical Physics, W. F. Ames, E. M. Harrell, and J. V. Herod (eds.), Acad. Press, Boston, 1993, pp. 79–86.
MR 1207142
[13] D. G. de Figueiredo, E. Mitidieri:
A maximum principle for an elliptic system and applications to a semilinear problem. SIAM J. Math. Anal. 17 (1986), 836–849.
DOI 10.1137/0517060 |
MR 0846392
[14] D. G. de Figueiredo, E. Mitidieri:
Maximum principle for cooperative elliptic systems. C.R. Acad. Sci. Paris Sér. I Math. 310 (1990), 49–52.
MR 1044413
[15] D. G. de Figueiredo, E. Mitidieri: Maximum principle for linear elliptic systems. Quaterno Matematico 177, Dip. Sc. Mat, Univ. Trieste, 1988.
[16] J. Fleckinger-Pellé, H. Serag:
Semilinear cooperative elliptic systems on $\mathbb{R}^{N}$. Rend. Mat. Appl. (7) 15 (1995), 89–108.
MR 1330181
[17] B. Hanouzet:
Espaces de Sobolev avec poids, application au problème de Dirichlet dans un demi espace. Rend. Sem. Mat. Univ. Padova 46 (1971), 227–272.
MR 0310417
[18] M. H. Protter, H. F. Weinberger:
Maximum Principles in Differential Equations. Prentice Hall, Englewood Cliffs, 1967.
MR 0219861