[1] J. W. Barrett, J. F. Blowey and H. Garcke:
Finite element approximation of a fourth order nonlinear degenerate parabolic equation. Numer. Math. 80 (1998), 525–556.
DOI 10.1007/s002110050377 |
MR 1650035
[2] J. W. Barrett, J. F. Blowey and H. Garcke:
On fully practical finite element approximations of degenerate Cahn-Hilliard systems. Math. Model. Num. Anal. 35 (2001), 713–748.
DOI 10.1051/m2an:2001133 |
MR 1863277
[3] J. Becker: Finite-Elemente-Verfahren zur Dünne-Filme-Gleichung mit nichtlinearem Oberflächenspannungsterm. Diplomarbeit, Universität Bonn, 2000.
[4] J. Becker, G. Grün: Numerical schemes for the thin film equation with nonlinear surface tension term. In preparation.
[5] E. Beretta, M. Bertsch and R. Dal Passo:
Nonnegative solutions of a fourth order nonlinear degenerate parabolic equation. Arch. Rational Mech. Anal. 129 (1995), 175–20.
DOI 10.1007/BF00379920 |
MR 1328475
[6] F. Bernis:
Viscous flows, fourth order nonlinear degenerate parabolic equations and singular elliptic problems. Free Boundary Problems: Theory and Applications. Pitman Research Notes in Mathematics 323, J. I. Diaz, M. A. Herrero, A. Linan and J. L. Vazquez (eds.), Longman, Harlow, 1995, pp. 40–56.
MR 1342325 |
Zbl 0839.35102
[7] F. Bernis:
Finite speed of propagation and continuity of the interface for thin viscous flows. Adv. Differential Equations 1 (1996), 337–368.
MR 1401398 |
Zbl 0846.35058
[8] F. Bernis:
Finite speed of propagation for thin viscous flows when $2\le n<3$. C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), 1169–1174.
MR 1396660
[10] A. L. Bertozzi, M. Pugh: The lubrication approximation for thin viscous films: Regularity and long time behaviour of weak solutions. Nonlin. Anal. 18 (1992), 217–234.
[11] M. Bertsch, R. Dal Passo, H. Garcke and G. Grün:
The thin viscous flow equation in higher space dimensions. Adv. Differential Equ. 3 (1998), 417–440.
MR 1751951
[12] Ph. G. Ciarlet:
The Finite Element Method for Elliptic Problems. North Holland, Amsterdam, 1978.
MR 0520174 |
Zbl 0383.65058
[13] R. Dal Passo, H. Garcke and G. Grün:
On a fourth order degenerate parabolic equation: global entropy estimates and qualitative behaviour of solutions. SIAM J. Math. Anal. 29 (1998), 321–342.
DOI 10.1137/S0036141096306170 |
MR 1616558
[15] B. Engquist, S. Osher:
One-sided difference approximations for nonlinear conservation laws. Math. Comp. 31 (1981), 321–351.
MR 0606500
[16] R. Eymard, M. Gutnic and D. Hilhorst:
The finite volume method for the Richards equation. Computational Geosciences 3 (1999), .
MR 1750075
[17] L. Giacomelli, F. Otto:
Droplet spreading: intermediate scaling law by pde methods. Comm. Pure Appl. Math. 55 (2002), 217–254.
DOI 10.1002/cpa.10017 |
MR 1865415
[18] G. Grün:
On the convergence of entropy consistent schemes for lubrication type equations in multiple space dimensions. Math. Comp (to appear).
MR 1972735
[19] G. Grün:
Degenerate parabolic equations of fourth order and a plasticity model with nonlocal hardening. Z. Anal. Anwendungen 14 (1995), 541–573.
DOI 10.4171/ZAA/639 |
MR 1362530
[20] G. Grün: On free boundary problems arising in thin film flow. Habilitationsschrift, Universität Bonn, 2001.
[21] G. Grün:
Droplet spreading under weak slippage: the optimal asymptotic propagation rate in the multi-dimensional case. Interfaces and Free Boundaries 4 (2002), 309–323.
MR 1914626 |
Zbl 1056.35072
[22] G. Grün:
Droplet spreading under weak slippage: a basic result on finite speed of propagation. Submitted, (2002).
MR 1969611
[23] G. Grün:
On the numerical simulation of wetting phenomena. In: Proceedings of the 15th GAMM-Seminar Kiel, Numerical Methods of Composite Materials, W. Hackbusch, S. Sauter (eds.), Vieweg-Verlag, Braunschweig. To appear.
MR 0993361
[24] G. Grün, M. Lenz, M. Rumpf:
A finite volume scheme for surfactant driven thin film flow. Finite volumes for complex applications III, R. Herbin, D. Kröner (eds.), Hermes Penton Sciences, 2002, pp. 567–574.
MR 2008981
[27] O. E. Jensen, J. B. Grotberg:
Insoluble surfactant spreading on a thin viscous film: shock evolution and film rupture. J. Fluid Mech. 240 (1992), 259–288.
DOI 10.1017/S0022112092000090 |
MR 1175090
[28] D. Kröner:
Numerical Schemes for Conservation Laws. Willey-Teubner Series Advances in Numerical Mathematics. Willey-Teubner, Chichester-Stuttgart, 1997.
MR 1437144
[29] M. Lenz: Finite Volumen Methoden für degenerierte parabolische Systeme—Ausbreitung eines Surfactant auf einem dünnen Flüssigkeitsfilm. Diplomarbeit, Universität Bonn, 2002.
[30] K. Mikula, N. Ramarosy:
Semi-implicit finite volume scheme for solving nonlinear diffusion equations in image processing. Numer. Math. 89 (2001), 561–590.
DOI 10.1007/PL00005479 |
MR 1864431
[31] A. Oron, S. H. Davis and S. G. Bankoff:
Long-scale evolution of thin liquid films. Rev. of Mod. Phys. 69 (1997), 931–980.
DOI 10.1103/RevModPhys.69.931
[32] L. Zhornitskaya, A. L. Bertozzi:
Positivity preserving numerical schemes for lubrication-type equations. SIAM J. Numer. Anal. 37 (2000), 523–555.
MR 1740768