[1] F. Abergel:
Attractor for a Navier-Stokes flow in an unbounded domain. Attractors, Inertial Manifolds and Their Approximation (Marseille-Luminy, 1987). RAIRO Modél. Math. Anal. Numér. 23 (1989), 359–370.
DOI 10.1051/m2an/1989230303591 |
MR 1014477
[4] G. K. Batchelor:
The Theory of Homogeneous Turbulence. Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge University Press, New York, 1953.
MR 0052268
[5] G. K. Batchelor:
Computation of the energy spectrum in homogeneous two-dimensional turbulence. Phys. Fluids Suppl. II 12 (1969), 233–239.
Zbl 0217.25801
[6] H. Bercovici, P. Constantin, C. Foias and O. P. Manley:
Exponential decay of the power spectrum of turbulence. J. Statist. Phys. 80 (1995), 579–602.
DOI 10.1007/BF02178549 |
MR 1342242
[7] A. J. Chorin:
Vorticity and Turbulence. Applied Mathematical Sciences 103. Springer-Verlag, New York, 1994.
MR 1281384
[9] P. Constantin, C. Foias:
Navier-Stokes Equation. University of Chicago Press, Chicago, 1989.
MR 0972259
[10] P. Constantin, C. Foias and O. Manley:
Effects of the forcing function spectrum on the energy spectrum in $2$-D turbulence. Phys. Fluids 6 (1994), 427–429.
DOI 10.1063/1.868042 |
MR 1252844
[11] C. Foias:
Statistical study of Navier-Stokes equations I. Rend. Sem. Mat. Univ. Padova 48 (1972), 219–348..
MR 0352733
[12] C. Foias:
Statistical study of Navier-Stokes equations II. Rend. Sem. Mat. Univ. Padova 49 (1973), 9–123.
Zbl 0283.76018
[13] C. Foias, M. S. Jolly, O. P. Manley and R. Rosa:
Statistical estimates for the Navier-Stokes equations and the Kraichnan theory of 2-D fully developed turbulence. J. Statist. Phys. 108 (2002), 591–646.
DOI 10.1023/A:1015782025005 |
MR 1914189
[14] C. Foias, O. P. Manley, R. Rosa and R. Temam:
Navier-Stokes Equations and Turbulence. Encyclopedia of Mathematics and Its Applications, Vol. 83. Cambridge University Press, Cambridge, 2001.
MR 1855030
[15] C. Foias, O. P. Manley, R. Rosa and R. Temam:
Cascade of energy in turbulent flows. C. R. Acad. Sci. Paris, Série I Math. 332 (2001), 509–514.
MR 1834060
[16] C. Foias, O. P. Manley, R. Rosa and R. Temam:
Estimates for the energy cascade in three-dimensional turbulent flows. C. R. Acad. Sci. Paris, Série I Math. 333 (2001), 499–504.
DOI 10.1016/S0764-4442(01)02008-0 |
MR 1859244
[17] C. Foias, G. Prodi:
Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension $2$. Rend. Sem. Mat. Univ. Padova 39 (1967), 1–34.
MR 0223716
[18] S. Friedlander, L. Topper:
Turbulence. Classic Papers on Statistical Theory. Interscience Publisher, New York, 1961.
MR 0118165
[19] U. Frisch:
Turbulence. The Legacy of A. N. Kolmogorov. Cambridge University Press, Cambridge, 1995.
MR 1428905 |
Zbl 0832.76001
[20] J. O. Hinze: Turbulence. McGraw-Hill Series in Mechanical Engineering. McGraw-Hill, New York, 1975.
[21] P. Holmes, J. L. Lumley and G. Berkooz:
Turbulence, Coherent Structures, Dynamical Systems, and Symmetry. Cambridge University Press, Cambridge, 1996.
MR 1422658
[22] E. Hopf:
Statistical hydromechanics and functional calculus. J. Rat. Mech. Analysis 1 (1952), 87–123.
MR 0059119 |
Zbl 0049.41704
[24] J. Jiménez, A. A. Wray, P. G. Saffman and R. S. Rogallo:
The structure of intense vorticity in isotropic turbulence. J. Fluid Mech. 255 (1993), 65–90.
DOI 10.1017/S0022112093002393 |
MR 1244224
[25] T. von Karman, L. Howarth: On the statistical theory of isotropic turbulence. Proc. Roy. Soc. London A164, 1938, pp. 192–215.
[26] A. N. Kolmogorov:
The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. C. R. (Dokl.) Acad. Sci. URSS 30 (1941), 301–305.
MR 0004146
[27] A. N. Kolmogorov:
On degeneration of isotropic turbulence in an incompressible viscous liquid. C. R. (Dokl.) Acad. Sci. URSS 31 (1941), 538–540.
MR 0004568
[28] A. N. Kolmogorov:
Dissipation of energy in locally isotropic turbulence. C. R. (Doklady) Acad. Sci. URSS 32 (1941), 16–18.
MR 0005851
[30] R. H. Kraichnan:
Inertial ranges in two-dimensional turbulence. Phys. Fluids 10 (1967), 1417–1423.
DOI 10.1063/1.1762301
[31] R. H. Kraichnan: Some modern developments in the statistical theory of turbulence. Statistical Mechanics: New Concepts, New Problems, New Applications, S. A. Rice, K. F. Freed and J. C. Light (eds.), 1972, pp. 201–227.
[32] O. Ladyzhenskaya:
The Mathematical Theory of Viscous Incompressible Flow. Revised English edition. Gordon and Breach Science Publishers, New York-London-Paris, 1963.
MR 0155093
[33] O. Ladyzhenskaya:
First boundary value problem for the Navier-Stokes equations in domains with non smooth boundaries. C. R. Acad. Sci. Paris, Sér. I Math. 314 (1992), 253–258.
MR 1151709 |
Zbl 0744.35034
[34] L. Landau, E. Lifchitz: Mécanique des Fluides, Physique Théorique, Tome 6. Editions Mir, Moscow, 1971.
[35] C. E. Leith:
Diffusion approximation for two-dimensional turbulence. Phys. Fluids 11 (1968), 671–673.
DOI 10.1063/1.1691968
[36] M. Lesieur:
Turbulence in Fluids. Third edition. Fluid Mechanics and its Applications, 40. Kluwer Academic Publishers Group, Dordrecht, 1997.
MR 1447438
[37] J.-L. Lions:
Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Gauthier-Villars, Paris, 1969.
MR 0259693 |
Zbl 0189.40603
[39] A. S. Monin, A. M. Yaglom: Statistical Fluid Mechanics: Mechanics of Turbulence 2. MIT Press, Cambridge, 1975.
[40] E. A. Novikov, R. V. Stewart: The intermittency of turbulence and the spectrum of energy dissipation. Izv. Akad. Nauk SSSR, Ser. Geoffiz 3 (1964), 408–413.
[41] A. M. Obukhoff:
On the energy distribution in the spectrm of turbulent flow. C. R. (Dokl.) Acad. Sci. USSR 32 (1941), 19–21.
MR 0005852
[43] L. F. Richardson:
Weather Prediction by Numerical Process. Cambridge University Press, Cambridge, 1922.
MR 2358797
[44] R. Rosa:
The global attractor for the 2D Navier-Stokes flow on some unbounded domains. Nonlinear Anal. 32 (1998), 71–85.
MR 1491614 |
Zbl 0901.35070
[45] Z. S. She, E. Jackson and S. A. Orszag: Structure and dynamics of homogeneous turbulence: models and simulations. Proc. Roy. Soc. London Ser. A 434 (), 101–124.
[46] G. I. Taylor: Diffusion by continuous movements. Proc. London Math. Soc. Ser. 2 20 (1921), 196–211.
[47] G. I. Taylor: Statistical theory of turbulence. Proc. Roy. Soc. London Ser. A 151 (1935), 421–478.
[48] G. I. Taylor: The spectrum of turbulence. Proc. Roy. Soc. London Ser. A 164 (1938), 476–490.
[49] R. Temam:
Navier-Stokes Equations. Theory and numerical analysis. Studies in Mathematics and its Applications, 2. 3rd edition. North-Holland Publishing Co., Amsterdam-New York, 1984. Reedition in 2001 in the AMS Chelsea series, AMS, Providence.
MR 0769654
[50] H. Tennekes, J. L. Lumley: A First Course in Turbulence. MIT Press, Cambridge, Mass., 1972.
[51] C. V. Tran, T. G. Shepherd:
Constraints on the spectral distribution of energy and enstrophy dissipation in forced two-dimensional turbulence. Physica D (to appear).
MR 1910295
[52] M. I. Vishik, A. V. Fursikov:
Translationally homogeneous statistical solutions and individual solutions with infinite energy of a system of Navier-Stokes equations. Sibirsk. Mat. Zh. 19 (1978), 1005–1031.
MR 0508497
[53] M. I. Vishik, A. V. Fursikov: Mathematical Problems of Statistical Hydrodynamics. Kluwer, Dordrecht, 1988.