Article
Keywords:
vortex rings; potential theory; elliptic equations
Summary:
In this paper, the axisymmetric flow in an ideal fluid outside the infinite cylinder ($r \le d$) where $ (r,\theta ,z)$ denotes the cylindrical co-ordinates in ${\mathbb{R}}^3$ is considered. The motion is with swirl (i.e. the $\theta $-component of the velocity of the flow is non constant). The (non-dimensional) equation governing the phenomenon is (Pd) displayed below. It is known from e.g. that for the problem without swirl ($f_q=0$ in (f)) in the whole space, as the flux constant $k$ tends to $\infty $, 1) $\mathrm{dist}(0z,\partial A)=O(k^{1/2})$; $\mathrm{diam}A = O(\exp (-c_0k^{3/2}))$; 2) $(k^{1/2} \Psi )_{k \in \mathbb{N}}$ converges to a vortex cylinder $U_m$ (see (1.2)). We show that for the problem with swirl, as $k\nearrow \infty $, 1) holds; if $m \le q+2$ then 2) holds and if $m> q+2$ it holds with $U_{q+2}$ instead of $U_m$. Moreover, these results are independent of $f_0$, $f_q$ and $d>0$.
References:
[1] M. S. Berger:
Mathematical Structures of Nonlinear Sciences, an Introduction. Kluwer Acad. Publ. NTMS 1, 1990.
MR 1071172
[2] L. E. Fraenkel:
On Steady Vortex Rings with Swirl and a Sobolev Inequality. Progress in PDE: Calculus of Variations, Applications, C. Bandle et al. (eds.), Longman Sc. & Tech., 1992, pp. 13–26.
MR 1194186
[4] B. Gidas B, WM. Ni & L. Nirenberg:
Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68 (1979), 209–243.
DOI 10.1007/BF01221125 |
MR 0544879
[7] Tadie:
Problèmes elliptiques à frontière libre axisymetrique: estimation du diamètre de la section au moyen de la capacité. Potential Anal. 5 (1996), 61–72.
DOI 10.1007/BF00276697 |
MR 1373832
[9] Tadie:
Steady vortex rings in an ideal fluid: asymptotics for variational solutions. Integral methods in sciences and engineering Vol 1 (Oulu 1996), Pitman Res. Notes Math. 374, Longman, Harlow, 1997, pp. .
MR 1603512 |
Zbl 0913.76017